In vitro digestibility and fermentation ruminant of buffalo ration based on Neptunia plena L. Benth and Leersia hexandra Swartz as local resources

Hamdi Mayulu, Suyadi Suyadi, M. Christiyanto, Sunarso Sunarso, T. P. Daru, Muh. I. Haris


Utilization of local resource (Neptunia plena L. Benth and Leersia hexandra Swartz) as feed ration for buffalo fattening could make cost efficiency, fulfil primary life needs and production. The objectives of study is to determine the Dry Matter Digestibility (DMD), Organic Matter Digestibility (OMD), NH3 ruminant fermentation and Volatile Fatty Acid (VFA). The conduct of the study was in Laboratory of Animal Husbandry Nutrient Science, Faculty of Animal Science and Agriculture, Diponegoro University, Semarang by using in vitro method with a Complete Randomized Design (CDR) of five treatments and five replicates: (1)  T1 =100% Leersia hexandra Swartz; (2) T2 = 100 % Neptunia plena L.Benth; (3) T3 = Ration (15% Neptunia plena L.Benth + 15% Leersia hexandra Swartz + 70% other feedstuffs); (4) T4 = Ration (20% Neptunia plena L.Benth + 20% Leersia hexandra Swartz + 60% other feedstuffs); and (5) T5 = Ration (25% Neptunia plena L.Benth + 25% Leersia hexandra Swartz + 50% other feedstuffs). Data analysis used analysis of variance with a significance level of 95% and then followed by Duncan Multiple Range Test (DMRT). The results showed that T3 and T4 treatments produced the highest DMD at (P <0.05), i.e. 43.65% and 43.26%, respectively. T2 treatment (47.66%) significantly produced the highest OMD (P <0.05) compared to T4 (46.81%) and T1 (45.36%). T5 treatment (5.28 mM) significantly produced in the highest NH3 (P <0.05) compared to T2 (4.88 mM); T3 (4.73 mM); and T1 (4.43 mM). T5 treatment (145.4 mM) significantly produced the highest VFA (P <0.05) compared to T4 (140.0 mM); T3 (135.4 mM); T2 (134.8 mM); and T1 (123.6 mM). In vitro digestibility and fermentation ruminant of buffalo ration based on Neptunia plena, L. Benth, and Leersia hexandra Swartz as local resources can buffalo improved ruminant fermentation so that it is capable of increasing the buffalo productivity.


Fermentation; Ruminant; Digestibility; Ration; Buffalo

Full Text:



Aderinboye, R., Akinlolu, A., Adeleke, M. A., Najeem, G., Ojo, V. O. A., Isah, O. A., & Babayemi, O. J. (2016). In vitro gas production and dry matter degradation of four browse leaves using cattle, sheep and goat inocula. Slovak Journal of Animal Science, 49(1), 32–43.

AOAC. (1990). Official Methods of Analysis. United States of America.

Christiyanto, M., Soejono, M., Utomo, R., Hartadi, H., & Widyobroto, B. P. (2005). The nutrient digestibility of different protein-energy precursor rations in dairy cattle fed on a basal diet of king grass. Journal of the Indonesian Tropical Animal Agriculture, 30(4), 242–247.

Dijkstra, J., Kebreab, E., Bannink, A., France, J., & Lopez, S. (2005). Application of the gas production system for ruminants. Animal Feed Science and Technology, 123(124), 561–578.

Goes, R. H. T., Silva, L. H. X., Diaz, T., Branco, A. F., Teodoro, A. L., & Ferreira, G. R. (2019). Sunflower cake in diets for beef cattle: Digestibility, kinetics and in vitro ruminal fermentation parameters. Acta Scientiarum - Animal Sciences, 41(1), 1–8.

Hart, K. J., Yáñez-Ruiz, D. R., Duval, S. M., McEwan, N. R., & Newbold, C. J. (2008). Plant extracts to manipulate rumen fermentation. Animal Feed Science and Technology, 147(1–3), 8–35.

Khanum, S. A., Yaqoob, T., Sadaf, S., Hussain, M., Jabbar, M. A., Hussain, H. N., REHMAN, S. (2007). Nutritional evaluation of various feedstuffs for livestock. Pakistan Vet. J, 27(3), 129–133.

Mabjeesh, S. J., Cohen, M., & Arieli, A. (2000). In vitro methods for measuring the dry matter digestibility of ruminant feedstuffs: comparison of methods and inoculum source. Journal of Dairy Science, 83(10), 2289–2294.

Madrid, J., Dolores Megías, M., & Hernández, F. (2002). In vitro determination of ruminal dry matter and cell wall degradation, and production of fermentation end-products of various by-products. Animal Research, 51(3), 189–199.

Makkar, H. P. S. (2004). Recent Advances in the in Vitro Gas Method for Evaluation of Nutritional Quality of Feed Resoures. In FAO (Ed.), Assessing quality and safety of animal feeds (pp. 55–88). Rome (Italy): FAO.

Mayulu, H. (2014). The nutrient digestibility of locally sheep fed with amofer palm oil byproduct-based complete feed. International Journal of Science and Engineering, 7(2), 106–111.

Mayulu, H. (2015). Cattle Feeding and Breeding Activity Efficiency. In Pakan Sapi Potong dan Efisiensi Usaha Penggemukan. Semarang: Unnes Press.

Mayulu, H., Fauziah, N., Christiyanto, M., Sunarso, S., & Haris, M. I. (2019). Digestibility value and fermentation level of local feed-based ration for sheep. Animal Production, 20(2), 95–102.

Ministry of Agriculture. (2018). Statistic Book of Animal Husbandry and Animal Health. In Buku Statistik Peternakandan Kesehatan Hewan. South Jakarta.

Mohamed, R., & Chaudhry, A. S. (2008). Methods to study degradation of ruminant feeds. Nutrition Research Reviews, 21(1), 68–81.

Mould, F. L., Kliem, K. E., Morgan, R., & Mauricio, R. M. (2005). In vitro microbial inoculum: A review of its function and properties. Animal Feed Science and Technology, 123–124, 31–50.

Nanda, A. S., & Nakao, T. (2003). Role of buffalo in the socioeconomic development of rural Asia: Current status and future prospectus. Animal Science Journal, 74(April), 443–455.

Phesatcha, K., & Wanapat, M. (2015). Improvement of nutritive value and in vitro ruminal fermentation of leucaena silage by molasses and urea supplementation. Asian-Australasian Journal of Animal

Sciences, 29(8), 1136–1144.

Rodríguez, M. A. B., Solorio-Sánchez, F. J., Sandoval-Castro, C. A., Klieve, A., Rojas-Herrera, R. A., Briceño-Poot, E. G., & Ku-Vera, J. C. (2015). Rumen function in vivo and in vitro in sheep fed Leucaena leucocephala. Tropical Animal Health and Production, 47(4), 757–764.

Sarwar, M., Khan, M. A., Nisa, M., Bhatti, S. A., & Shahzad, M. A. (2009). Nutritional management for buffalo production. Asian-Australasian Journal of Animal Sciences, 22(7), 1060–1068.

Sugoro, I., Wiryawan, K. G., Astuti, D. A., & Wahyono, T. (2015). Gas production and rumen fermentation characteristics of buffalo diets containing by-product from some sorghum varieties. Jurnal Ilmu Ternak Dan Veteriner, 20(4), 242–249.

Sunarso. (2003). Ruminant Feeds in Integrated System of Livestock-Agriculture. In Professor Inauguration Speech of Diponegoro University. Semarang: Diponegoro University Publisher.

Sutardi, T. (2001). Revitalization of cattle farms through the use of waste-based rations and organic mineral supplements. In Research on RUT VIII.1. Bogor: State Ministry of Research and Technology together with the Indonesian Institute of Sciences.

Tilley, J. M. A., & Terry, R. A. (1963). A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104–111.

Wanapat, M., Kang, S., & Phesatcha, K. (2013). Enhancing buffalo production efficiency through rumen manipulation and nutrition. Buffalo Bulletin, 32(1), 258–275.

Wanapat, M., & Rowlinson, P. (2007). Nutrition and feeding of swamp buffalo: feed resources and rumen approach. Italian Journal of Animal Science, 6(sup2), 67–73.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.