Isolation, Characterization, and Antimicrobial Susceptibility of Escherichiacoli from Breeder Superior Native Chicken (KUB)in Yogyakarta, Indonesia

Authors

  • Widodo Suwito Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Jl. Raya Jogja-Wonosari KM 3, Gunung Kidul 55861, Yogyakarta, 55861, Indonesia
  • Andriani Veterinary Research Center, National Research and Innovation Agency (BRIN), Jl Raya Jakarta-Bogor Km 46 Cibinong, Bogor, 16124, Indonesia
  • Roza Azizah Primatika Department of Veterinary Public Health, Faculty of Veterinary Medicine Universitas Gadjah Mada, JL Fauna No.2, Karang Gayam, Caturtunggal, Depok, Sleman, Yogyakarta, 55281, Indonesia
  • Elisabet Tangkonda Department of Microbiology, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Jl. Adisucipto-Penfui, East Nusa Tengara, 85001, Indonesia.
  • Roza Primatika Department of Microbiology, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Jl. Adisucipto-Penfui, East Nusa Tengara, 85001, Indonesia

DOI:

https://doi.org/10.21776/ub.jiip.2025.035.01.8

Keywords:

KUB chicken, E. coli, isolation, antibiotic, sensitivity

Abstract

Colibacillosis remains a prevalent issue in breeder superior native chickens (KUB). This study aims to isolate, characterize, and assess the antimicrobial susceptibility of E. coli from breeder KUB chickens in Yogyakarta, Indonesia. Samples, including infertile eggs (n=113), day-old chick (DOC) deaths (n=53), drinking water (n=17), feed (n=25), eggshells (n=117), and fluff (n=113), were collected through random sampling from breeder KUB chickens. Isolation and identification of E. coli were carried out via biochemical methods, whereas serological tests were performed with antisera for O1:K1, O2:K1, and O78:K80. Hemolytic E. coli strains were identified through culture on blood agar, and antimicrobial susceptibility was evaluated via the disk diffusion method. A total of 31 E. coli isolates were obtained from various sources: infertile eggs (15.04%), DOC-contaminated eggs (13.20%), drinking water (35.29%), feed (8.00%), eggshells (8.00%), and fluff (20.25%). Among the isolates, 22.62% were hemolytic, and 77.38% were nonhemolytic. The serotype distributions were as follows: 11.9% O1:K1, 9.52% O2:K1, and 9.52% O78:K80. E. coli isolates were susceptible to tetracycline, oxytetracycline, enrofloxacin, and sulfamethoxazole but resistant to ampicillin, streptomycin, and erythromycin. E. coli, the causative agent of colibacillosis, has been isolated from KUB breeder chickens in Yogyakarta. Therefore, strengthening biosecurity measures and implementing effective antibiotic management strategies are crucial for mitigating the risk of antibiotic resistance.

References

Abbas, G., Khan, S. H., Hassan, M., Mahmood, S., Naz, S., & Gilani, S. S. (2015). Incidence of poultry diseases in different seasons in Khushab district, Pakistan. Journal of Advanced Veterinary and Animal Research, 2(2), 141–145. https://doi.org/10.5455/javar.2015.b65

Advisory Committee on the Microbiological Safety of Food (ACMSF). (2016). Ad hoc group on eggs: An update on the microbiological risk from shell eggs and their products. https://acmsf.food.gov.uk/sites/default/files/acmsf-egg-reportv1.pdf

Arifin, A. Y., Suwito, W., & Andriani, A. (2024). The transmission of Salmonella pullorum in KUB chicken farm in Sleman, Yogyakarta. AIP Conference Proceedings, 2999(1), 090001. https://doi.org/10.1063/5.0144001

Center for Indonesian Veterinary Analytical Studies (CIVAS). (2016). Pendekatan ecohealth untuk pengembangan strategi penggunaan antimikroba secara bijak dalam pengendalian resistensi antimikroba pada kesehatan manusia, hewan, dan lingkungan di Indonesia. https://adoc.pub/center-for-indonesian-veterinary-analytical-studies-civas.html

Clinical and Laboratory Standards Institute (CLSI). (2020). Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals (1st ed., Vol. 4). https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf

Das, A., Sen, A., Dhar, P. K., Nath, S. K., Ghosh, P., & Saifuddin, A. K. M. (2017). Isolation of Escherichia coli from the liver and yolk sac of day-old chicks with their antibiogram. British Journal of Biomedical and Multidisciplinary Research, 1(1), 19–25. https://www.researchgate.net/publication/318776989

El Ftouhy, F. Z., Hmyene, A., Nacer, S., Kadiri, A., Charrat, N., Fagrach, A., ... & Nassik, S. (2023). Antibiotic resistance of Escherichia coli and Salmonella species isolated from table eggs in Morocco. World’s Veterinary Journal, 13(1), 167–174. https://doi.org/10.54203/scil.2023.wvj17

Hernández, A. J. C. (2014). Poultry and avian diseases. In N. K. Van Alfen (Ed.), Encyclopedia of agriculture and food systems (Vol. 4, pp. 504–520). Academic Press. https://doi.org/10.1016/B978-0-444-52512-3.00183-2

Ibrahim, R. A., Cryer, T. L., Lafi, S. Q., Basha, E. A., Good, L., & Tarazi, Y. H. (2019). Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Veterinary Research, 15(1), 1–16. https://doi.org/10.1186/s12917-019-1901-1

Iskandar, S., & Sartika, T. (2014, November). KUB chicken: The first Indonesian kampung chicken selected for egg production. In Proceedings of the 16th AAAP Animal Science Congress (Vol. 2, pp. 157–160).

Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 33(3), 300–305. https://doi.org/10.4103/joacp.JOACP_349_15

Kasimanickam, V., Kasimanickam, M., & Kasimanickam, R. (2021). Antibiotics use in food animal production: Escalation of antimicrobial resistance—Where are we now in combating AMR? Medical Sciences, 9(1), 14. https://doi.org/10.3390/medsci9010014

Kathayat, D., Lokesh, D., Ranjit, S., & Rajashekara, G. (2021). Avian pathogenic Escherichia coli (APEC): An overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens, 10(4), 467. https://doi.org/10.3390/pathogens10040467

Khan, A., Rind, R., Shoaib, M., Kamboh, A. A., Mughal, G. A., Lakho, S. A., ... & Yousaf, A. (2016). Isolation, identification and antibiogram of Escherichia coli from table eggs. Journal of Animal Health and Production, 4(1), 1–5. https://doi.org/10.14737/journal.jahp/2016/4.1.1.5

Mogrovejo, D. C., Perini, L., Gostin?ar, C., Sep?i?, K., Turk, M., Ambroži?-Avguštin, J., ... & Gunde-Cimerman, N. (2020). Prevalence of antimicrobial resistance and hemolytic phenotypes in culturable arctic bacteria. Frontiers in Microbiology, 11, 570. https://doi.org/10.3389/fmicb.2020.00570

Nguyen, X. D., Zhao, Y., Evans, J. D., Lin, J., & Purswell, J. L. (2022). Survival of Escherichia coli in airborne and settled poultry litter particles. Animals, 12(3), 284. https://doi.org/10.3390/ani12030284

Ori, E. L., Takagi, E. H., Andrade, T. S., Miguel, B. T., Cergole-Novella, M. C., Guth, B. E. C., ... & Dos Santos, L. F. (2019). Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: Pathotypes and serotypes over a 6-year period of surveillance. Epidemiology & Infection, 147, e10. https://doi.org/10.1017/S0950268818002595

Owusu-Doubreh, B., Appaw, W. O., & Abe-Inge, V. (2023). Antibiotic residues in poultry eggs and its implications on public health: A review. Scientific African, 19, e01456. https://doi.org/10.1016/j.sciaf.2022.e01456

Pakbin, B., Brück, W. M., & Rossen, J. W. (2021). Virulence factors of enteric pathogenic Escherichia coli: A review. International Journal of Molecular Sciences, 22(18), 9922. https://doi.org/10.3390/ijms22189922

Panth, Y. (2019). Colibacillosis in poultry: A review. Journal of Agriculture and Natural Resources, 2(1), 301–311. https://doi.org/10.3126/janr.v2i1.26094

Punom, S. A., Khan, M. S. R., Pritha, S. T., Hassan, J., Rahman, S., Mahmud, M. M., & Islam, M. S. (2020). Isolation and molecular-based identification of bacteria from unhatched leftover eggs of ducks in selected mini-hatcheries of Kishoreganj, Bangladesh. Journal of Advanced Veterinary and Animal Research, 7(1), 164–169. https://doi.org/10.5455/javar.2020.g406

Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., & Choroszy-Krol, I. (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathogens, 11(1), 1–16. https://doi.org/10.1186/s13099-019-0290-0

Sora, V. M., Meroni, G., Martino, P. A., Soggiu, A., Bonizzi, L., & Zecconi, A. (2021). Extraintestinal pathogenic Escherichia coli: Virulence factors and antibiotic resistance. Pathogens, 10(11), 1355. https://doi.org/10.3390/pathogens10111355

Swelum, A. A., El-Saadony, M. T., Abd El-Hack, M. E., Ghanima, M. M. A., Shukry, M., Alhotan, R. A., ... & El-Tarabily, K. A. (2021). Ammonia emissions in poultry houses and microbial nitrification as a promising reduction strategy. Science of the Total Environment, 781, 146978. https://doi.org/10.1016/j.scitotenv.2021.146978

Tang, Y. W., Sussman, M., & Schwartzman, J. (2015). Diarrhoeagenic Escherichia coli. In Y. W. Tang, M. Sussman, D. Liu, I. Poxton, & J. Schwartzman (Eds.), Molecular medical microbiology (2nd ed., pp. 1373–1402). Academic Press. https://doi.org/10.1016/C2010-1-67744-9

Ugwu, I. C., Lee-Ching, L., Ugwu, C. C., Okoye, J. O. A., & Chah, K. F. (2020). In vitro assessment of pathogenicity and virulence encoding gene profiles of avian pathogenic Escherichia coli strains associated with colibacillosis in chickens. Iranian Journal of Veterinary Research, 21(3), 180–188. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608036/

World Health Organization (WHO). (2017). Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance. https://www.who.int/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance

Zhao, S., Wang, C. L., Chang, S. K., Tsai, Y. L., & Chou, C. H. (2019). Characterization of Escherichia coli isolated from day-old chicken fluff in Taiwanese hatcheries. Avian Diseases, 63(1), 9–16. https://doi.org/10.1637/11935-072318-Reg.1

Downloads

Published

2025-04-29

Issue

Section

Articles

How to Cite

Isolation, Characterization, and Antimicrobial Susceptibility of Escherichiacoli from Breeder Superior Native Chicken (KUB)in Yogyakarta, Indonesia. (2025). Jurnal Ilmu-Ilmu Peternakan, 35(1), 80-90. https://doi.org/10.21776/ub.jiip.2025.035.01.8