Physiological Response of Dairy Cows in Mandiri Sejahtera Cijeruk Livestock Group Based on Microclimate in Real Time Using NB IoT
DOI:
https://doi.org/10.21776/ub.jiip.2025.035.01.9Keywords:
Dairy cows, physiological response, IoT microclimateAbstract
The research aimed to compare microclimate data using the Internet of Things (IoT) system with the physiological response data of dairy cows as a reference for modifying the microclimate conditions of dairy cow barns in highlands. The study used ten lactating dairy cows in the Cijeruk Independent Livestock Group. Temperature, humidity, ammonia, wind speed, lighting, and THI were recorded in real time for 24 hours. The observed physiological responses were rectal temperature (RT), heart rate (HR), respiratory rate (RR), and heat tolerance coefficient (HTC). The microclimate and physiological response data were analyzed using descriptive statistical methods and Post Hoc statistical tests using the Statistical Package for the Social Sciences (SPSS). The results of the environmental conditions using Narrowband (NB)-IoT (D-Ruminant) showed maximum values (Temperature 29.03±2.27 at 12:30 PM, Humidity 83.75±4.09 at 07:30 AM, Ammonia 0.16±0.11 at 05:30 PM, Lighting 21238±11082 at 12:30 PM, Wind Speed 2.15±1.83 at 12:30 PM, and THI 78.92±1.96 at 12:30 PM). And the minimum values for the environmental conditions (Temperature 24.06±0.49 at 07:30 AM, Humidity 65.59±14.4 at 12:30 PM, Ammonia 0.11±0.04 at 12:30 PM, Lighting 425±237, Wind Speed 1.47±1.16 at 07:30 AM, and THI 73.72±0.94 at 07:30 AM). The physiological responses and HTC showed maximum levels (Rectal Temperature 38.3±0.44 at 12:30 PM).
References
Al Reyad, M., Sarker, M. A. H., Uddin, M. E., Habib, R., & Rashid, M. H. U. (2016). Effect of heat stress on milk production and its composition of Holstein Friesian crossbred dairy cows. Asian Journal of Medical and Biological Research, 2(2), 190-195. https://doi.org/10.3329/ajmbr.v2i2.29060
Amir, A., Purwanto, B. P., & Permana, I. G. (2017). Respon Termoregulasi Sapi Perah pada Energi Ransum yang Berbeda (Thermoregulation Response of Dairy Cows on Different Energy Content). Jurnal Ilmu dan Teknologi Peternakan, 5(2), 72-79. Retrieved from http://journal-old.unhas.ac.id/index.php/peternakan/article/view/3069
Asmarasari, SA., Azizah, N., Sutikno, S., Puastuti, W., Amir, A., Praharani, L., Rusdiana, S., Hidayat, C., Hafid, A., Kusumaningrum, D. A., Saputra, F., Talib, C., Herliatika, A., Shiddieqy, M.I., and Hayanti, S.Y. (2023). A review of dairy cattle heat stress mitigation in Indonesia. Veterinary World, 1098–1108. https://doi.org/10.14202/vetworld.2023.1098-1108
Benezra, MV. (1954). A new index measures the adaptability of cattle to tropical conditions. Proc. J. Anim. Sci. 13:10-15.
Corazzin, M., Saccà, E., Lippe, G., Romanzin, A., Foletto, V., Da Borso, F., and Piasentier, E. (2020). Effect of heat stress on dairy cow performance and the expression of protein metabolism genes in mammary cells. Animals, 10(11), 2124. https://doi.org/10.3390/ani10112124
Heraini, D., Purwanto, B. P., & Suryahadi, S. (2019). Perbandingan suhu lingkungan dan pengaruh pakan terhadap produktivitas sapi perah di daerah dengan ketinggian berbeda. Jurnal ilmiah peternakan terpadu, 7(2), 234-240. https://doi.org/10.23960/jipt.v7i2.p234-240
Herbut, P., Angrecka, S., and Walczak, J. (2018). Environmental parameters to assess heat stress in dairy cattle: A review. International Journal of Biometeorology, 62(12), 2089–2097. https://doi.org/10.1007/s00484-018-1629-9
Jeelani, R., Konwar, D., Khan, A., Kumar, D., Chakraborty, D., and Brahma, B. (2019). Reassessment of a temperature-humidity index for measuring heat stress in crossbred dairy cattle of a sub-tropical region. Journal of Thermal Biology, pp. 82, 99–106. https://doi.org/10.1016/j.jtherbio.2019.03.017
Kartiko, M. A., Sambodho, P., & Harjanti, D. W. (2019). Respon fisiologis sapi laktasi akibat modifikasi lingkungan kandang. AGROMEDIA: Berkala Ilmiah Ilmu-ilmu Pertanian, 37(2). Retrieved from https://jurnalkampus.stipfarming.ac.id/index.php/am/article/view/259
Kibler, HH. (1964). Thermal effects of various temperature-humidity combinations on Holstein cattle as measured by eight physiological responses. Missouri Agricultural Experiment, Exp. Stn Res. Bull. 862, Mt Vernon. Environmental Physiology and Shelter Engineering, LXVII.
Kibar, M., Aytekin, ?., & Özkan, ?. A. (2024). Fuzzy Logic Model for Determining Optimal Temperature-Humidity Index Values in Dairy Farms in Temperate Climate. Journal of Applied Animal Welfare Science, 28(1), 61–73. https://doi.org/10.1080/10888705.2024.2400137
Larasati, D. A. (2016). Faktor yang berpengaruh terhadap produktivitas susu sapi perah di Desa Geger Kecamatan Sendang Kabupaten Tulungagung. Jurnal Geografi, 14(1), 34-41.
Leondro, H., Widyobroto, B. P., and Agus, A. (2021). Physiological responses of the Holstein Friesian dairy cows raised under tropical conditions in Indonesia. Journal of Physics Conference Series, 1869(1), 012161. https://doi.org/10.1088/1742-6596/1869/1/012161
Li, J., Narayanan, V., Kebreab, E., Dikmen, S., and Fadel, JG. (2021). A mechanistic thermal balance model of dairy cattle. Biosystems Engineering, 209, 256–270. https://doi.org/10.1016/j.biosystemseng.2021.06.009
Lindkvist, S. (2023). Light environments for dairy cows : impact of light intensity, spectrum and uniformity. In Acta universitatis agriculturae Sueciae. https://doi.org/10.54612/a.3d3og9hhro
Mariana, E., Hadi, D. N., & Agustin, N. Q. (2016). Respon fisiologis dan kualitas susu sapi perah friesian holstein pada musim kemarau panjang di dataran tinggi. Jurnal Agripet, 16(2), 131-139. https://doi.org/10.17969/agripet.v16i2.5888
Mariana, E., Sumantri, C., Astuti, D. A., Anggraeni, A., & Gunawan, A. (2019). Mikroklimat, termoregulasi dan produktivitas sapi perah Friesians Holstein pada ketinggian tempat berbeda. Jurnal Ilmu Dan Teknologi Peternakan Tropis, 6(1), 70-77. https://doi.org/10.33772/jitro.v6i1.5617
McLean, J., Downie, J., Jones, C., Stombough, D. (1983). Thermal adjustment of stress (Bos taurus) to abrupt changes in environment temperature. J Agric Sci 48:81-84.
Polsky, L., and Von Keyserlingk, MA. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645–8657. https://doi.org/10.3168/jds.2017-12651
Pasaribu, A., Firmansyah, F., & Idris, N. (2015). Analisis faktor-faktor yang mempengaruhi produksi susu sapi perah di Kabupaten Karo Provinsi Sumatera Utara. Jurnal Ilmiah Ilmu-Ilmu Peternakan, 18(1), 28-35. https://doi.org/10.22437/jiiip.v18i1.2656
Reuscher, K.J., Cook, N.B., Halbach, C.E., Mondaca, M.R., and Van Os, J.M.C. (2024). Consistent stall air speeds in commercial dairy farms are associated with less variability in cow lying times. Frontiers in Animal Science, 5. https://doi.org/10.3389/fanim.2024.1422937
Reece, W.O., Erickson, H.H., Goff, J.P., & Uemura, E.E. (2015). Dukes Physiology of Domestic Animals. Wiley-Blackwell. Oxford.
Roland, L., Drillich, M., Klein-Jöbstl, D., and Iwersen, M. (2016). Invited review: The influence of climatic conditions on calves' development, performance, and health. J. Dairy Sci. 99(4):2438-2452. https://doi.org/10.3168/jds.2015-9901.
Sanchis, E., Calvet, S., Del Prado, A., and Estellés, F. (2018). A meta-analysis of environmental factors' effects on ammonia emissions from dairy cattle houses. Biosystems Engineering, 178, 176–183. https://doi.org/10.1016/j.biosystemseng.2018.11.017
Scanavez, A.L.A., Fragomeni, B., and Mendonça, L.G.D. (2018). Animal factors associated with core body temperature of nonlactating dairy cows during summer. Journal of Animal Science, 96(12), 5000–5009. https://doi.org/10.1093/jas/sky353
Suherman, D., & Purwanto, B. P. (2015). Respon fisiologis sapi perah dara Fries Holland yang diberi konsentrat dengan tingkat energi berbeda. Jurnal Sain Peternakan Indonesia, 10(1), 13-21. https://doi.org/10.31186/jspi.id.10.1.13-21
Setyorini, D. A., Rochmi, S. E., Suprayogi, T. W., & Lamid, M. (2020). Kualitas dan kuantitas produksi susu sapi di Kemitraan PT. Greenfields Indonesia ditinjau dari ketinggian tempat. Jurnal Sain Peternakan Indonesia, 15(4), 426-433.https://doi.org/10.31186/jspi.id.15.4.426-433
Statistik Peternakan dan Kesehatan Hewan. (2022). Direktorat Jenderal Peternakan Departemen Pertanian.
Tanuwiria, U.H., Susilawati, I., Tasrifin, D.S., Salman, L.B., and Mushawwir, A. (2022). Behavioral, physiological, and blood biochemistry of Friesian Holstein dairy cattle at different altitudes in West Java, Indonesia. Biodiversitas Journal of Biological Diversity, 23(1). https://doi.org/10.13057/biodiv/d230157
Utomo, M.A., Aziz, A., and Harjito, B. (2019). Server room temperature and humidity monitoring based on the Internet of Things (IoT). In Journal of Physics: Conference Series (Vol. 1306, No. 1, p. 012030). IOP Publishing
Zhou, M., Huynh, T., Koerkamp, P.G., Van Dixhoorn, I., Amon, T., and Aarnink, A. (2022). Effects of increasing air temperature on skin and respiration heat loss from dairy cows at different relative humidity and air velocity levels. Journal of Dairy Science, 105(8),7061–7078.https://doi.org/10.3168/jds.2021-21683
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Tirta Mubarrok, Ahmad Yani, Iyep Komala, Yasintus Basmadarto Gampur

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).