Physiological Response of Dairy Cows in Mandiri Sejahtera Cijeruk Livestock Group Based on Microclimate in Real Time Using NB IoT

Authors

  • Muhammad Tirta Mubarrok Department of Animal Production Science and Technology, Faculty of Animal Husbandry, IPB University, Bogor, 16680, Indonesia
  • Ahmad Yani Department of Animal Production Science and Technology, Faculty of Animal Husbandry, IPB University, Bogor, 16680, Indonesia
  • Iyep Komala Department of Animal Production Science and Technology, Faculty of Animal Husbandry, IPB University, Bogor, 16680, Indonesia
  • Yasintus Basmadarto Gampur Department of Animal Production Science and Technology, Faculty of Animal Husbandry, IPB University, Bogor, 16680, Indonesia

DOI:

https://doi.org/10.21776/ub.jiip.2025.035.01.9

Keywords:

Dairy cows, physiological response, IoT microclimate

Abstract

The research aimed to compare microclimate data using the Internet of Things (IoT) system with the physiological response data of dairy cows as a reference for modifying the microclimate conditions of dairy cow barns in highlands. The study used ten lactating dairy cows in the Cijeruk Independent Livestock Group. Temperature, humidity, ammonia, wind speed, lighting, and THI were recorded in real time for 24 hours. The observed physiological responses were rectal temperature (RT), heart rate (HR), respiratory rate (RR), and heat tolerance coefficient (HTC). The microclimate and physiological response data were analyzed using descriptive statistical methods and Post Hoc statistical tests using the Statistical Package for the Social Sciences (SPSS). The results of the environmental conditions using Narrowband (NB)-IoT (D-Ruminant) showed maximum values (Temperature 29.03±2.27 at 12:30 PM, Humidity 83.75±4.09 at 07:30 AM, Ammonia 0.16±0.11 at 05:30 PM, Lighting 21238±11082 at 12:30 PM, Wind Speed 2.15±1.83 at 12:30 PM, and THI 78.92±1.96 at 12:30 PM). And the minimum values for the environmental conditions (Temperature 24.06±0.49 at 07:30 AM, Humidity 65.59±14.4 at 12:30 PM, Ammonia 0.11±0.04 at 12:30 PM, Lighting 425±237, Wind Speed 1.47±1.16 at 07:30 AM, and THI 73.72±0.94 at 07:30 AM). The physiological responses and HTC showed maximum levels (Rectal Temperature 38.3±0.44 at 12:30 PM).

 

References

Al Reyad, M., Sarker, M. A. H., Uddin, M. E., Habib, R., & Rashid, M. H. U. (2016). Effect of heat stress on milk production and its composition of Holstein Friesian crossbred dairy cows. Asian Journal of Medical and Biological Research, 2(2), 190-195. https://doi.org/10.3329/ajmbr.v2i2.29060

Amir, A., Purwanto, B. P., & Permana, I. G. (2017). Respon Termoregulasi Sapi Perah pada Energi Ransum yang Berbeda (Thermoregulation Response of Dairy Cows on Different Energy Content). Jurnal Ilmu dan Teknologi Peternakan, 5(2), 72-79. Retrieved from http://journal-old.unhas.ac.id/index.php/peternakan/article/view/3069

Asmarasari, SA., Azizah, N., Sutikno, S., Puastuti, W., Amir, A., Praharani, L., Rusdiana, S., Hidayat, C., Hafid, A., Kusumaningrum, D. A., Saputra, F., Talib, C., Herliatika, A., Shiddieqy, M.I., and Hayanti, S.Y. (2023). A review of dairy cattle heat stress mitigation in Indonesia. Veterinary World, 1098–1108. https://doi.org/10.14202/vetworld.2023.1098-1108

Benezra, MV. (1954). A new index measures the adaptability of cattle to tropical conditions. Proc. J. Anim. Sci. 13:10-15.

Corazzin, M., Saccà, E., Lippe, G., Romanzin, A., Foletto, V., Da Borso, F., and Piasentier, E. (2020). Effect of heat stress on dairy cow performance and the expression of protein metabolism genes in mammary cells. Animals, 10(11), 2124. https://doi.org/10.3390/ani10112124

Heraini, D., Purwanto, B. P., & Suryahadi, S. (2019). Perbandingan suhu lingkungan dan pengaruh pakan terhadap produktivitas sapi perah di daerah dengan ketinggian berbeda. Jurnal ilmiah peternakan terpadu, 7(2), 234-240. https://doi.org/10.23960/jipt.v7i2.p234-240

Herbut, P., Angrecka, S., and Walczak, J. (2018). Environmental parameters to assess heat stress in dairy cattle: A review. International Journal of Biometeorology, 62(12), 2089–2097. https://doi.org/10.1007/s00484-018-1629-9

Jeelani, R., Konwar, D., Khan, A., Kumar, D., Chakraborty, D., and Brahma, B. (2019). Reassessment of a temperature-humidity index for measuring heat stress in crossbred dairy cattle of a sub-tropical region. Journal of Thermal Biology, pp. 82, 99–106. https://doi.org/10.1016/j.jtherbio.2019.03.017

Kartiko, M. A., Sambodho, P., & Harjanti, D. W. (2019). Respon fisiologis sapi laktasi akibat modifikasi lingkungan kandang. AGROMEDIA: Berkala Ilmiah Ilmu-ilmu Pertanian, 37(2). Retrieved from https://jurnalkampus.stipfarming.ac.id/index.php/am/article/view/259

Kibler, HH. (1964). Thermal effects of various temperature-humidity combinations on Holstein cattle as measured by eight physiological responses. Missouri Agricultural Experiment, Exp. Stn Res. Bull. 862, Mt Vernon. Environmental Physiology and Shelter Engineering, LXVII.

Kibar, M., Aytekin, ?., & Özkan, ?. A. (2024). Fuzzy Logic Model for Determining Optimal Temperature-Humidity Index Values in Dairy Farms in Temperate Climate. Journal of Applied Animal Welfare Science, 28(1), 61–73. https://doi.org/10.1080/10888705.2024.2400137

Larasati, D. A. (2016). Faktor yang berpengaruh terhadap produktivitas susu sapi perah di Desa Geger Kecamatan Sendang Kabupaten Tulungagung. Jurnal Geografi, 14(1), 34-41.

Leondro, H., Widyobroto, B. P., and Agus, A. (2021). Physiological responses of the Holstein Friesian dairy cows raised under tropical conditions in Indonesia. Journal of Physics Conference Series, 1869(1), 012161. https://doi.org/10.1088/1742-6596/1869/1/012161

Li, J., Narayanan, V., Kebreab, E., Dikmen, S., and Fadel, JG. (2021). A mechanistic thermal balance model of dairy cattle. Biosystems Engineering, 209, 256–270. https://doi.org/10.1016/j.biosystemseng.2021.06.009

Lindkvist, S. (2023). Light environments for dairy cows : impact of light intensity, spectrum and uniformity. In Acta universitatis agriculturae Sueciae. https://doi.org/10.54612/a.3d3og9hhro

Mariana, E., Hadi, D. N., & Agustin, N. Q. (2016). Respon fisiologis dan kualitas susu sapi perah friesian holstein pada musim kemarau panjang di dataran tinggi. Jurnal Agripet, 16(2), 131-139. https://doi.org/10.17969/agripet.v16i2.5888

Mariana, E., Sumantri, C., Astuti, D. A., Anggraeni, A., & Gunawan, A. (2019). Mikroklimat, termoregulasi dan produktivitas sapi perah Friesians Holstein pada ketinggian tempat berbeda. Jurnal Ilmu Dan Teknologi Peternakan Tropis, 6(1), 70-77. https://doi.org/10.33772/jitro.v6i1.5617

McLean, J., Downie, J., Jones, C., Stombough, D. (1983). Thermal adjustment of stress (Bos taurus) to abrupt changes in environment temperature. J Agric Sci 48:81-84.

Polsky, L., and Von Keyserlingk, MA. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645–8657. https://doi.org/10.3168/jds.2017-12651

Pasaribu, A., Firmansyah, F., & Idris, N. (2015). Analisis faktor-faktor yang mempengaruhi produksi susu sapi perah di Kabupaten Karo Provinsi Sumatera Utara. Jurnal Ilmiah Ilmu-Ilmu Peternakan, 18(1), 28-35. https://doi.org/10.22437/jiiip.v18i1.2656

Reuscher, K.J., Cook, N.B., Halbach, C.E., Mondaca, M.R., and Van Os, J.M.C. (2024). Consistent stall air speeds in commercial dairy farms are associated with less variability in cow lying times. Frontiers in Animal Science, 5. https://doi.org/10.3389/fanim.2024.1422937

Reece, W.O., Erickson, H.H., Goff, J.P., & Uemura, E.E. (2015). Dukes Physiology of Domestic Animals. Wiley-Blackwell. Oxford.

Roland, L., Drillich, M., Klein-Jöbstl, D., and Iwersen, M. (2016). Invited review: The influence of climatic conditions on calves' development, performance, and health. J. Dairy Sci. 99(4):2438-2452. https://doi.org/10.3168/jds.2015-9901.

Sanchis, E., Calvet, S., Del Prado, A., and Estellés, F. (2018). A meta-analysis of environmental factors' effects on ammonia emissions from dairy cattle houses. Biosystems Engineering, 178, 176–183. https://doi.org/10.1016/j.biosystemseng.2018.11.017

Scanavez, A.L.A., Fragomeni, B., and Mendonça, L.G.D. (2018). Animal factors associated with core body temperature of nonlactating dairy cows during summer. Journal of Animal Science, 96(12), 5000–5009. https://doi.org/10.1093/jas/sky353

Suherman, D., & Purwanto, B. P. (2015). Respon fisiologis sapi perah dara Fries Holland yang diberi konsentrat dengan tingkat energi berbeda. Jurnal Sain Peternakan Indonesia, 10(1), 13-21. https://doi.org/10.31186/jspi.id.10.1.13-21

Setyorini, D. A., Rochmi, S. E., Suprayogi, T. W., & Lamid, M. (2020). Kualitas dan kuantitas produksi susu sapi di Kemitraan PT. Greenfields Indonesia ditinjau dari ketinggian tempat. Jurnal Sain Peternakan Indonesia, 15(4), 426-433.https://doi.org/10.31186/jspi.id.15.4.426-433

Statistik Peternakan dan Kesehatan Hewan. (2022). Direktorat Jenderal Peternakan Departemen Pertanian.

Tanuwiria, U.H., Susilawati, I., Tasrifin, D.S., Salman, L.B., and Mushawwir, A. (2022). Behavioral, physiological, and blood biochemistry of Friesian Holstein dairy cattle at different altitudes in West Java, Indonesia. Biodiversitas Journal of Biological Diversity, 23(1). https://doi.org/10.13057/biodiv/d230157

Utomo, M.A., Aziz, A., and Harjito, B. (2019). Server room temperature and humidity monitoring based on the Internet of Things (IoT). In Journal of Physics: Conference Series (Vol. 1306, No. 1, p. 012030). IOP Publishing

Zhou, M., Huynh, T., Koerkamp, P.G., Van Dixhoorn, I., Amon, T., and Aarnink, A. (2022). Effects of increasing air temperature on skin and respiration heat loss from dairy cows at different relative humidity and air velocity levels. Journal of Dairy Science, 105(8),7061–7078.https://doi.org/10.3168/jds.2021-21683

Downloads

Published

2025-04-30

Issue

Section

Articles

How to Cite

Physiological Response of Dairy Cows in Mandiri Sejahtera Cijeruk Livestock Group Based on Microclimate in Real Time Using NB IoT. (2025). Jurnal Ilmu-Ilmu Peternakan, 35(1), 91-100. https://doi.org/10.21776/ub.jiip.2025.035.01.9