Development of Inulin-Enriched Honey Powder for Further Application in Prebiotic Biscuits

Authors

  • Firman Jaya Department of Animal Products Technology, Faculty of Animal Science, Universitas Brawijaya, Malang 65145, Indonesia https://orcid.org/0000-0003-3331-0817
  • Lilik Eka Radiati Department of Animal Products Technology, Faculty of Animal Science, Universitas Brawijaya, Malang 65145, Indonesia https://orcid.org/0000-0002-3289-6804
  • Heni Setyo Prayogi Department of Animal Production, Faculty of Animal Science, Universitas Brawijaya, Malang 65145, Indonesia https://orcid.org/0009-0008-7319-5415
  • Dewi Masyithoh Department of Animal Husbandry, Faculty of Animal Husbandry, Islamic University of Malang, 65144, Indonesia https://orcid.org/0000-0002-6156-9423
  • Dini Agustini Faculty of Animal Science, Universitas Brawijaya, Malang 65145, Indonesia
  • Parlan Food Technology, Department of Food Industry, Faculty of Agroindustry Technology, Universitas Padjadjaran, Bandung, 45363, Indonesia

DOI:

https://doi.org/10.21776/ub.jiip.2024.034.03.9

Keywords:

Honey powder, spray drying, chemical properties, prebiotic agent, healthy biscuit

Abstract

Maltodextrin has the drawback of increasing the glycemic index (GI), which is considered healthy during the digestion process. The incorporation of inulin, a prebiotic agent, addresses these issues while offering additional health benefits. This study aimed to characterize inulin-enriched honey powder produced via spray drying with varying ratios (100%, 75%, 50%, and 25%) of inulin and maltodextrin as carriers for potential application as a sugar substitute for prebiotic biscuit formulations. Chemical properties, including pH, moisture content, hydroxymethylfurfural (HMF) content, diastase activity, and the sugar profile, were analysed. The results revealed that formulations containing 50% inulin presented optimal characteristics, such as a balanced pH, minimal HMF levels, and favourable sugar profiles (e.g., glucose, maltose, fructose-to-glucose and glucose-to-moisture ratios). These findings suggest that inulin-enriched honey powder with balanced carrier ratios could serve as an innovative sugar substitute, contributing to the development of healthier prebiotic biscuits. Future studies should explore functional properties, including the prebiotic potential of inulin-enriched honey powder, which impacts biscuit rheology and consumer acceptability.

References

Afinjuomo, F., Abdella, S., Youssef, S. H., Song, Y., & Garg, S. (2021). Inulin and Its Application in Drug Delivery. Pharmaceuticals, 14(9), 855. https://doi.org/10.3390/ph14090855

Aggarwal, D., Sabikhi, L., & Sathish Kumar, M. H. (2016). Formulation of reduced-calorie biscuits using artificial sweeteners and fat replacer with dairy–multigrain approach. NFS Journal, 2, 1–7. https://doi.org/10.1016/j.nfs.2015.10.001

Akram, W., Joshi, R., & Garud, N. (2019). Inulin: A promising carrier for controlled and targeted drug delivery system. Journal of Drug Delivery and Therapeutics, 9(1-s), 437–441. https://doi.org/10.22270/jddt.v9i1-s.2398

AOAC Official Method 950.02 Animal Feed. (2023). Official Methods of Analysis of AOAC International. https://doi.org/10.1093/9780197610145.003.1380

Araujo-Díaz, S. B., Leyva-Porras, C., Aguirre-Bañuelos, P., Álvarez-Salas, C., & Saavedra-Leos, Z. (2017). Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydrate Polymers, 167, 317–325. https://doi.org/10.1016/j.carbpol.2017.03.065

Bara?ska, A., Jedli?ska, A., & Samborska, K. (2021). Dehumidified-Air-Assisted Spray Drying of Buckwheat Honey with Maltodextrin and Skim Milk Powder as Carriers. Applied Sciences, 11(7), 3150. https://doi.org/10.3390/app11073150

Bhandari, B., & Roos, Y. H. (2017). Introduction to Non-Equilibrium States and Glass Transitions—The Fundamentals Applied to Foods Systems. Editor(s): Bhandari, B. & Roos, Y.H. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Non-Equilibrium States and Glass Transitions in Foods, Woodhead Publishing, Pages xxxiii-l. https://doi.org/10.1016/b978-0-08-100309-1.00001-8

Chua, L. S., & Adnan, N. A. (2014). Biochemical and nutritional components of selected honey samples. Acta Scientiarum Polonorum Technologia Alimentaria, 13(2), 169–179. https://doi.org/10.17306/j.afs.2014.2.6

da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051

Dan, P. N. S. M., Omar, S., & Ismail, W. I. W. (2018). Physicochemical Analysis of Several Natural Malaysian Honeys and Adulterated Honey. IOP Conference Series: Materials Science and Engineering, 440, 012049. https://doi.org/10.1088/1757-899x/440/1/012049

Ekpong, A., Phomkong, W., & Ondsard, E. (2016). The effects of maltodextrin as a drying aid and drying temperature on production of tamarind powder and consumer acceptance of the powder. International Food Research Journal, 23(1): 300-308.

Eris, F. R., Pamela, V. Y., Kusumasari, S., Febriansah, M. R., & Riyanto, R. A. (2023). Dextrose Equivalent (DE) Variation and Maltodextrin Concentration Effects in Yoghurt Powder Characteristics Using Foam-mat Drying. Indonesian Food Science and Technology Journal, 7(1), 36–42. https://doi.org/10.22437/ifstj.v7i1.30152

Fernandes, R. V. de B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101, 524–532. https://doi.org/10.1016/j.carbpol.2013.09.083

Giri, S., Dutta, P., & Giri, T. K. (2021). Inulin-based carriers for colon drug targeting. Journal of Drug Delivery Science and Technology, 64, 102595. https://doi.org/10.1016/j.jddst.2021.102595

González, E., Gómez-Caravaca, A. M., Giménez, B., Cebrián, R., Maqueda, M., Parada, J., Martínez-Férez, A., Segura-Carretero, A., & Robert, P. (2020). Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chemistry, 310, 125976. https://doi.org/10.1016/j.foodchem.2019.125976

Güldane, M., & Herken, E. N. (2021). The Impact of Partial Sweetener Substitution on Physicochemical, Textural and Sensory Properties of Biscuits. G?da The Journal of Food, 47(1), 66–77. https://doi.org/10.15237/gida.gd21138

Jaya, F., Radiati, L. E., Estiasih, T., Rosyidi, D., Lastriyanto, A., Junus, M., Batoro, J., Erwan, E., Lamerkabel, J. S. A., Masyithoh, D., Ustadi, U., & Pinandita, E. P. (2022). Honey moisture reduction using several thermal methods and their effects on its quality. E3S Web of Conferences, 335, 00026. https://doi.org/10.1051/e3sconf/202233500026

Kawai, K., Fukami, K., Thanatuksorn, P., Viriyarattanasak, C., & Kajiwara, K. (2011). Effects of moisture content, molecular weight, and crystallinity on the glass transition temperature of inulin. Carbohydrate Polymers, 83(2), 934–939. https://doi.org/10.1016/j.carbpol.2010.09.001

Kek, S. P., Chin, N. L., Tan, S. W., Yusof, Y. A., & Chua, L. S. (2016). Classification of Honey from Its Bee Origin via Chemical Profiles and Mineral Content. Food Analytical Methods, 10(1), 19–30. https://doi.org/10.1007/s12161-016-0544-0

Kheto, A., Bist, Y., Awana, A., Kaur, S., Kumar, Y., & Sehrawat, R. (2023). Utilization of inulin as a functional ingredient in food: Processing, physicochemical characteristics, food applications, and future research directions. Food Chemistry Advances, 3, 100443. https://doi.org/10.1016/j.focha.2023.100443

Lacerda, E. C. Q., Calado, V. M. de A., Monteiro, M., Finotelli, P. V., Torres, A. G., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/j.carbpol.2016.05.093

Masson-Matthee, M. D. (2007). The Codex Alimentarius: Harmonization Through Standard-Setting. The Codex Alimentarius Commission and Its Standards, 51–94. https://doi.org/10.1007/978-90-6704-515-5_3

Mensink, M. A., Frijlink, H. W., van der Voort Maarschalk, K., & Hinrichs, W. L. J. (2015). Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate Polymers, 130, 405–419. https://doi.org/10.1016/j.carbpol.2015.05.026

Michalska-Ciechanowska, A., Majerska, J., Brzezowska, J., Wojdy?o, A., & Figiel, A. (2020). The Influence of Maltodextrin and Inulin on the Physico-Chemical Properties of Cranberry Juice Powders. Chem Engineering, 4(1), 12. https://doi.org/10.3390/chemengineering4010012

Miravet, G., Alacid, M., Obón, J. M., & Fernández?López, J. A. (2015). Spray?drying of pomegranate juice with prebiotic dietary fibre. International Journal of Food Science & Technology, 51(3), 633–640. Portico. https://doi.org/10.1111/ijfs.13021

Montero Castillo, P. M., Morelos Martelo, V., Gómez Acevedo, K., Ligardo, Y. A. M., & Acevedo-Correa, D. (2023). Effect of Inulin Addition on Physicochemical, Microbiological, Textural, and Sensorial Characteristics of Fermented Butifarra with Lactobacillus sakei. Fermentation, 9(10), 913. https://doi.org/10.3390/fermentation9100913

Mutlu, C., Koç, A., & Erba?, M. (2020). Some physical properties and adsorption isotherms of vacuum-dried honey powder with different carrier materials. LWT, 134, 110166. https://doi.org/10.1016/j.lwt.2020.110166

Robert, P., García, P. & Fredes, C. (2016). Drying and Preservation of Polyphenols. Advances in technologies for producing food-relevant polyphenols, CRC Press/Taylor and Francis Group, USA, pp. 281-302 https://doi.org/10.1201/9781315371245-10

Roze, M., Diler, G., Pontoire, B., Novalès, B., Jonchère, C., Crucean, D., Le-Bail, A., & Le-Bail, P. (2023). Effects of Sucrose Replacement by Polyols on the Dough-Biscuit Transition: Understanding by Model Systems. Foods, 12(3), 607. https://doi.org/10.3390/foods12030607

Saavedra-Leos, M. Z., Leyva-Porras, C., Martínez-Guerra, E., Pérez-García, S. A., Aguilar-Martínez, J. A., & Álvarez-Salas, C. (2014). Physical properties of inulin and inulin–orange juice: Physical characterization and technological application. Carbohydrate Polymers, 105, 10–19. https://doi.org/10.1016/j.carbpol.2013.12.079

Samborska, K., Wasilewska, A., Gondek, E., Jakubczyk, E., & Kami?ska-Dwórznicka, A. (2017). Diastase Activity Retention and Physical Properties of Honey/Arabic Gum Mixtures After Spray Drying and Storage. International Journal of Food Engineering, 13(6). https://doi.org/10.1515/ijfe-2016-0320

Samborska, K., Wiktor, A., Jedli?ska, A., Matwijczuk, A., Jamróz, W., Skwarczy?ska-Maj, K., Kie?czewski, D., Tu?odziecki, M., B?a?owski, ?., & Witrowa-Rajchert, D. (2019). Development and characterization of physical properties of honey-rich powder. Food and Bioproducts Processing, 115, 78–86. https://doi.org/10.1016/j.fbp.2019.03.004

Samborska, K., Bara?ska, A., Szulc, K., Jankowska, E., Truszkowska, M., Ostrowska?Lig?za, E., Wo?osiak, R., Szyma?ska, E., & Jedli?ska, A. (2020). Reformulation of spray?dried apple concentrate and honey for the enhancement of drying process performance and the physicochemical properties of powders. Journal of the Science of Food and Agriculture, 100(5), 2224–2235. Portico. https://doi.org/10.1002/jsfa.10247

Santoso, M., Widyorini, R., Agus Prayitno, T., Sulistyo, J., & Hamidah, N. (2020). Effect of pressing temperatures on bonding properties of sucrose-citric acid for nipa palm fronds particleboard. Wood Research, 65(5), 747–756. https://doi.org/10.37763/wr.1336-4561/65.5.747756

Sidlagatta, V., Chilukuri, S. V. V., Devana, B. R., Dasi, S. D., & Rangaswamy, L. (2020). Effect of Maltodextrin Concentration and Inlet Air Temperature on Properties of Spray Dried Powder from Reverse Osmosis Concentrated Sweet Orange Juice. Brazilian Archives of Biology and Technology, 63. https://doi.org/10.1590/1678-4324-2020190538

Siemons, I., Politiek, R. G. A., Boom, R. M., van der Sman, R. G. M., & Schutyser, M. A. I. (2020). Dextrose equivalence of maltodextrins determines particle morphology development during single sessile droplet drying. Food Research International, 131, 108988. https://doi.org/10.1016/j.foodres.2020.108988

Sobulska, M., & Zbicinski, I. (2020). Advances in spray drying of sugar-rich products. Drying Technology, 39(12), 1774–1799. https://doi.org/10.1080/07373937.2020.1832513

The National Standardization Agency of Indonesia. (2018). Honey. SNI 8664-2008, Jakarta, Indonesia. https://www.academia.edu/40684668/SNI_8664_2018_Standar_Nasional_Indonesia_Badan_Standardisasi_Nasional_Madu

Tomczyk, M., Zagu?a, G., Tarapatskyy, M., Ka?ániová, M., & D?ugan, M. (2021). The Effect of Honey Variety on the Quality of Honey Powder. Journal of Microbiology, Biotechnology and Food Sciences, 9(5), 949–954. https://doi.org/10.15414/jmbfs.2020.9.5.949-954

van der Sman, R. G. M., & Renzetti, S. (2018). Understanding functionality of sucrose in biscuits for reformulation purposes. Critical Reviews in Food Science and Nutrition, 59(14), 2225–2239. https://doi.org/10.1080/10408398.2018.1442315

Vatankhah, M., Garavand, F., Elhamirad, A., & Yaghbani, M. (2015). Influence of sugar replacement by stevioside on physicochemical and sensory properties of biscuit. Quality Assurance and Safety of Crops & Foods, 7(3), 393–400. https://doi.org/10.3920/qas2014.0396

?bikowska, A., Szyma?ska, I., & Kowalska, M. (2020). Impact of Inulin Addition on Properties of Natural Yogurt. Applied Sciences, 10(12), 4317. https://doi.org/10.3390/app10124317

Downloads

Published

2024-12-20

How to Cite

Development of Inulin-Enriched Honey Powder for Further Application in Prebiotic Biscuits. (2024). Jurnal Ilmu-Ilmu Peternakan, 34(3), 379-390. https://doi.org/10.21776/ub.jiip.2024.034.03.9