Evaluation of coffee bean husk fermented by a combination of Aspergillus niger, Trichoderma harzianum, and Saccharomyces cerevisiae as animal feed

Authors

  • Himmatul Khasanah University of Jember
  • Desy Cahya Widianingrum
  • Listya Purnamasari
  • Ali Wafa
  • Seong-Gu Hwang School of Animal Life Convergence Science, Hankyong National University, Hankyong Na-tional University, Anseong-si, Gyeonggi-do 17579, Republic of Korea

DOI:

https://doi.org/10.21776/ub.jiip.2022.032.03.13

Keywords:

Local feedstuff, Lignocellulolytic fungi, Solid state fermentation, Yeast

Abstract

Abundant coffee bean husk acquires an alternative source of fiber for livestock feed, but a high level of the crude fiber of it became an obstacle. Solid-state fermentation technology using lignocellulolytic fungi is known to be able to improve the nutritional quality of feedstuff that have high fiber content. Its mechanism is through the degradation of the lignocellulose fraction and enhance protein content. This study aimed to determine the nutritional quality of fermented coffee bean husk with a combination of fungi and yeast. The fermentation method used a solid-state fermentation consisting of 7 different inoculums, namely: P0: Unfermented coffee bean husk, P1: Aspergillus niger, P2: Saccharomyces cerevisiae, P3: Trichoderma harzianum, P4: Aspergillus niger + S. Cereviciase, P5: Aspergillus niger + Trichoderma harzianum, P6: Saccharomyces cerevisiae Trichoderma harzianum and P7: Aspergillus niger + Saccharomyces. Cereviciase + Trichoderma harzianum. The nutritional quality of the fermented coffee bean husk was determined by proximate analysis, lignocellulolytic fraction, and digestibility. The data obtained were analyzed by ANOVA and followed by Tukey's post hoc test. The crude fiber content of fermented coffee bean husk (P1-P7) was lower than unfermented (P0). There was no significant difference among treatments in crude fat and protein. Treatment P3 has the highest total digestibility nutrient (70) and the lower crude fiber (15.03). A combination of Aspergillus niger and Saccharomyces cerevisiae reduce lignin content by about (4,16%). In conclusion, the fermented coffee bean husk can be utilized as animal feedstuff with higher nutritional quality than unfermented.

References

Ahmed S., Mustafa, G., Arshad, M., Rajoka, M.I. 2017. Fungal biomass protein production from Trichoderma harzianum using rice polishing. BioMed Res Int. 6232793

Arya, S.S., Venkatram, R., More, P.R., Vijayan, P. 2021. The wastes of coffee bean processing for utilization in food: a review. J Food Sci. Technol. 1-16.

Bayer, E. A., Belaich, J. P., Shoham, Y., and Lamed, R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol., 58, 521-554. doi: 10.1146/annurev.micro.57.030502.091022

Beckham, G. T., Dai, Z., Matthews, J. F., Momany, M., Payne, C. M., Adney, W. S., ... and Himmel, M. E. 2012. Harnessing glycosylation to improve cellulase activity. Current opinion in biotechnology, 23(3), 338-345.

Benoliel, B., Torres, F.A.G., de Moraes, L.M.P. 2013. A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura. Springer Plus. 2:656. doi:10.1186/2193-1801-2-656.

Binowo, S., Tulung, B., Londok, J. J., and Regar, M. N. 2019. Efek pembatasan pakan dan sumber serat kasar berbeda terhadap performa ayam pedaging. ZOOTEC, 39(1), 112-121.

Callaway, E. S., and Martin, S. A. 1997. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Journal of Dairy Science, 80(9), 2035-2044.

Daning, D. R. A., and Karunia, A. D. 2018. Teknologi Fermentasi Menggunakan Kapang Trichoderma sp untuk Meningkatkan Kualitas Nutrisi Kulit Kopi sebagai Pakan Ternak Ruminansia. AGRIEKSTENSIA: Jurnal Penelitian Terapan Bidang Pertanian, 17(1), 70-76.

Das M, M., and Abdulhameed, S. 2020. Agro-processing Residues for the Production of Fungal Bio-control Agents. In Valorisation of Agro-industrial Residues–Volume II: Non-Biological Approaches (pp. 107-126). Springer, Cham.

Datta, R. 1981. Acidogenic fermentation of lignocellulose-acid yield and conversion of components. Biotechnol. Bioeng. United States, 23(9), 2167-2170

de Oliveira Rodrigues, P., Gurgel, L. V. A., Pasquini, D., Badotti, F., Góes-Neto, A., and Baffi, M. A. 2020. Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renewable Energy, 145, 2683-2693.

Dinata, A. A. N. B. S., and Utami, A. S. J. 2019. Nutrient content of coffee berries husk fermented with different inoculants. In IOP Conference Series: Earth and Environmental Science (Vol. 387, No. 1, p. 012006). IOP Publishing.

Do Vale, L. H., Edivaldo Filho, X. F., Miller, R. N., Ricart, C. A., and de Sousa, M. V. 2014. Cellulase systems in Trichoderma: an overview. Biotechnology and Biology of Trichoderma, 229-244.

Do Vale, L. H., Gómezâ€Mendoza, D. P., Kim, M. S., Pandey, A., Ricart, C. A., Edivaldo, X. F. F., and Sousa, M. V. 2012. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics, 12(17), 2716-2728. doi: 10.1002/pmic.201200063.

Fang, W., Zhang, X., Zhang, P., Morera, X. C., van Lier, J. B., and Spanjers, H. (2020). Evaluation of white rot fungi pretreatment of mushroom residues for volatile fatty acid production by anaerobic fermentation: Feedstock applicability and fungal function. Bioresource Technology, 297, 122447.

Gervais, P., and Molin, P. 2003. The role of water in solid-state fermentation. Biochemical Engineering Journal, 13(2-3), 85-101.

Godoy, M. G., Amorim, G. M., Barreto, M. S., and Freire, D. M. 2018. Agricultural residues as animal feed: protein enrichment and detoxification using solid-state fermentation. In Current developments in biotechnology and bioengineering (pp. 235-256). Elsevier.

Iriondo-DeHond, A., Iriondo-DeHond, M., and Del Castillo, M. D. 2020. Applications of compounds from coffee processing by-products. Biomolecules, 10(9), 1219.

Junges, D., Morais, G., Spoto, M. H. F., Santos, P. S., Adesogan, A. T., Nussio, L. G., and Daniel, J. L. P. 2017. Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. Journal of Dairy Science, 100(11), 9048-9051.

Khan, Z., and Dwivedi, A. K. 2013. Fermentation of Biomass for Production of Ethanol: A Review. Universal journal of Environmental Research and Technology, 3(1).

Khasanah, H., Purnamasari, L., and Kusbianto, D. E. 2020. Pemanfaatan MOL (Mikroorganisme Lokal) sebagai substitusi biostarter EM4 untuk meningkatkan kualitas nutrisi pakan fermentasi berbasis tongkol dan tumpi jagung. In Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner (pp. 357-364).

Kumar, S. S., Swapna, T. S., and Sabu, A. 2018. Coffee husk: a potential agro-industrial residue for bioprocess. In: Singhania R., Agarwal R., Kumar R., Sukumaran R. (eds). Springer: Waste to Wealth. Energy, Environment, and Sustainability (pp. 97-109). Singapore: Springer.

Lone, M. A., Wani, M. R., Sheikh, S. A., Sahay, S., and Dar, M. S. 2012. Antagonistic Potentiality of Trichoderma harzianum against Cladosporium spherospermum, Aspergillus niger and Fusarium oxysporum. J. Biol. Agric. Healthcare, 2, 2224-3208.

MacLellan, J. 2010. Strategy to enhance enzymatic hydrolisis of cellulose in lignocelullosic biomass. MMG 445 Basic Bioethanol. 6: 31-35.

Manan, M. A., and Webb, C. 2017. Design aspects of solid state fermentation as applied to microbial bioprocessing. J Appl Biotechnol Bioeng, 4(1), 91.

Mayulu, H., Fauziah, N., Christiyanto, M., Sunarso, S., and Haris, M. I. 2019. Digestibility value and fermentation level of local feed-based ration for sheep. Animal Production, 20(2), 95-102.

Mihrete, Y., and Bultosa, G. 2017. The effect of blending ratio of tef [Eragrostis tef (Zucc) Trotter], sorghum (sorghum bicolor (L.) moench) and faba bean (Vicia faba) and fermentation time on chemical composition of injera. J Nutr Food Sci, 7(02), 1-7.

Nuryana, R. S. 2016. Pengaruh dosis Dan waktu fermentasi Kulit Kopi (Coffea arabica) menggunakan Rhizopus oryzae dan Saccharomyces cerevisiae terhadap kandungan protein kasar dan serat kasar. Students e-Journal, 5(3).

Olagaray, K. E., Sivinski, S. E., Saylor, B. A., Mamedova, L. K., Sauls-Hiesterman, J. A., Yoon, I., and Bradford, B. J. 2019. Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. Journal of dairy science, 102(9), 8092-8107.

Oliveira, L. S., and Franca, A. S. (2015). An overview of the potential uses for coffee husks. Coffee in health and disease prevention, 283-291.

Olugosi, O. A., Agbede, J. O., Adebayo, I. A., Onibi, G. E., and Ayeni, O. A. 2019. Nutritional enhancement of cocoa pod husk meal through fermentation using Rhizopus stolonifer. African Journal of Biotechnology, 18(30), 901-908.

Oshoma, C. E., and Eguakun-Owie, S. O. 2018. Conversion of food waste to single cell protein using Aspergillus niger. Journal of Applied Sciences and Environmental Management, 22(3), 350-355.

Parrado, J., and Bautista, J. 1993. Protein enrichment of sunflower lignocellulosic fraction by Trichoderma harzianum S/G 2431 in low moisture content media. Bioscience, biotechnology, and biochemistry, 57(2), 317-318.

Priyanto, A., Endraswati, A., Rizkiyanshah, Febriyani, N.C., Nopiansyah, T., Nuswantara, L.K. 2017. Effect of corn oil and urea ssupplementation in ration on rumen fluid profile (DMD, OMD, pH, N-NH3 and total rumen microbes. J Anim Sci.17 (1): 1-9.

Ralph, J., Lapierre, C., and Boerjan, W. (2019). Lignin structure and its engineering. Current opinion in biotechnology, 56, 240-249.

Riswandi, Muhakka, Lehan, M. 2015. Evaluation of in vitro digestibility of Bali cattle ration supplemented with bioplus probiotics. J Sriwijaya Anim Sci. 4(1): 35-46.

Saputro, R. A. T., Ngadiyono, N., Yusiati, L. M., and Budisatria, I. G. S. 2015. Kecernaan In Vitro Jerami Padi Fermentasi Dengan Menggunakan Berbagai Level Inokulum Aspergillus niger dan Lactobacillus plantarum. Jurnal Pengembangan Penyuluhan Pertanian, 11(22), 25-35.

Schuster, E., Dunn-Coleman, N., Frisvad, J. C., and Van Dijck, P. W. 2002. On the safety of Aspergillus niger–a review. Applied microbiology and biotechnology, 59(4), 426-435.

Sekah, A., Ning, I., Titin, W. 2018. Kadar serat kasar dan protein kasar kulit kopi yang difermentasi menggunakan Trichoderma viride dan Saccharomyces cerevisiae. J Livestock Anim Prod. 1 (2): 1-6

Septianto R, Tampoebolon BIM, Prasetiono BWHE. 2019. Pengaruh Perbedaan Aras Starter dan Lama Pemeramanterhadap Kecernaan Bahan Kering dan Kecernaan Bahan Organik secara In Vitro Fermentasi Kelobot Jagung (Zea mays) Teramoniasi. J Sain Peternakan Indonesia. 14(4): 411-417.

Septianto, R., Tampoebolon, B. I. M., and Prasetiono, B. W. H. E. 2019. Pengaruh Perbedaan Aras Starter dan Lama Pemeramanterhadap Kecernaan Bahan Kering dan Kecernaan Bahan Organik secara In Vitro Fermentasi Kelobot Jagung (Zea mays) Teramoniasi. Jurnal Sain Peternakan Indonesia, 14(4), 411-417.

Shi C, He J, Yu J, Yu B, Huang Z, Mao X, Chen D. 2015. Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J Anim Sci Biotechnol. 6(1): 1-7.

Shi, C., He, J., Yu, J., Yu, B., Huang, Z., Mao, X., ... and Chen, D. (2015). Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. Journal of Animal Science and Biotechnology, 6(1), 1-7.

Siada, O. A. A., Negm, M. S., Basiouny, M. E., Fouad, M. A., and Elagroudy, S. 2018. Protein enrichment of agro–industrial waste by trichoderma harzianum EMCC 540 through solid state fermentation for use as animal feed. J. Geogr. Environ. Earth Sci. Int., 13(4), 1-12.

Silva, A. J. D., Gómezâ€Mendoza, D. P., Junqueira, M., Domont, G. B., Ximenes Ferreira Filho, E., de Sousa, M. V., and Ricart, C. A. O. 2012. Blue nativeâ€PAGE analysis of Trichoderma harzianum secretome reveals cellulases and hemicellulases working as multienzymatic complexes. Proteomics, 12(17), 2729-2738. doi: 10.1002/pmic.201200048.

Simanihuruk, K., and Sirait, J. 2010. Silase kulit buah kopi sebagai pakan dasar pada kambing boerka sedang tumbuh. In Seminar Nasional Teknologi Peternakan dan Veteriner. 557-566.

Soccol CR, da Costa ESF, Letti LAJ, Karp SG, Woiciechowski AL, de Souza Vandenberghe LP. 2017. Recent developments and innovations in solid state fermentation. Biotechnol Res Innov. 1(1): 52-71.

Soccol, C. R., da Costa, E. S. F., Letti, L. A. J., Karp, S. G., Woiciechowski, A. L., and de Souza Vandenberghe, L. P. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1(1), 52-71.

Supartini N, Fitasari E. 2011. Penggunaan bekatul fermentasi Aspergillus Niger dalam pakan terhadap karakteristik organ dalam ayam pedaging. Buana Sains. 11(2): 127-136.

Supartini, N., and Fitasari, E. (2011). Penggunaan bekatul fermentasi “Aspergillus Niger “dalam pakan terhadap karakteristik organ dalam ayam pedaging. Buana Sains, 11(2), 127-136.

Tilley, J. M. A., and Terry, D. R. 1963. A twoâ€stage technique for the in vitro digestion of forage crops. Grass and forage science, 18(2), 104-111.

Vuong, M. D., Thanh, N. T., Son, C. K., and Yves, W. 2021. Protein enrichment of cassava-based dried distiller’s grain by solid state fermentation using Trichoderma Harzianum and Yarrowia Lipolytica for feed ingredients. Waste and Biomass Valorization, 12(7), 3875-3888.

Wang, J., Cao, F., Su, E., Zhao, L., and Qin, W. 2018. Improvement of animal feed additives of Ginkgo leaves through solid-state fermentation using Aspergillus niger. International journal of biological sciences, 14(7), 736.

Yohanista, M., Sofjan, O., and Widodo, E. 2014. Evaluasi nutrisi campuran onggok dan ampas tahu terfermentasi Aspergillus niger, Rizhopus oligosporus dan kombinasi sebagai bahan pakan pengganti tepung jagung. Jurnal Ilmu-Ilmu Peternakan (Indonesian Journal of Animal Science), 24(2), 72-83.

Zhu, W., Wei, Z., Xu, N., Yang, F., Yoon, I., Chung, Y., ... and Wang, J. 2017. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology, 8(1), 1-9.

Downloads

Published

2022-12-29