The effect of differences between house length and placement zones inside the closed house on the utilization of broiler chicken feed protein in the dry season

Arjanggi Ari Bimo, Teysar Adi Sarjana, Edjeng Suprijatna

Abstract


The research aims to examine the effect of differences in house length and placement zones inside a closed house on the utilization of broiler chicken feed protein in the dry season. The research material is 600 broiler chickens (strain cobb) divided into 20 experimental units and 2 closed houses with a length of 60 m with a capacity of 11,000 and a length of 120 m with a capacity of 22,000. This research used a randomized block design with a split-plot pattern and two factors. The main plot is closed house with length 60 and 120 meters, the subplot is the zone placement of chicken which are divided into 4 zones: zone 1 is parallel to the inlet, zone 2 is measured at 1/4 of the house length, zone 3 is measured at 1/2 the house length, zone 4 is measured at 3/4 the house length from the inlet. The parameters observed were protein digestibility, the protein efficiency ratio (PER), and nitrogen retention (NR). Macroclimate, microclimate, and microclimatic ammonia observed as supporting data and an overview of the research conditions. Longer house and placement zone of chicken further from the inlet increase temperature, humidity, and microclimatic ammonia inside the closed house. The results showed an interaction between the house length and placement zone of chicken against NR. The housing length of 120 m and zone 4 was significantly (P≤0,05) having lower protein digestibility, PER, and NR values. Protein digestibility began to decrease significantly (P≤0,05) in zone 3, while PER and NR significantly decrease from zone 2. It concludes that longer closed house and placement zones further from the inlet decrease the ability of broilers to utilizing feed protein in the dry season.


Keywords


House length; Placement zones; Protein digestibility; PER; Nitrogen retention; Broiler

Full Text:

PDF

References


Akbarian, A., J. Michiels., J. Degroote., M. Majdeddin., A. Golian and S. D. Smet. 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. and Biotech. 7(1): 1-14.

Anggorodi, R. 1994. Nutrisi Aneka Ternak Unggas. PT Gramedia Pustaka Utama, Jakarta.

Angkeke, I. P., T.A. Sarjana and E. Suprijatna. 2018. The influence of microclimatic ammonia changes in closed house on broiler’s performance in dry season. J. Anim. Prod. 20(2): 125-131.

Association of Analytical Communities (AOAC). 2005. Official Methods of Analysis. Eighteenth edition. Association of Official Analytical Chemists. Benjamin Franklin Station, Washington.

Aviagen. 2010. Ross Environmental Management in the Broiler House. http://en.aviagen.com/assets/TechCenter/RossBroiler/Ross. Diakses tanggal 01 September 2019.

Badan Meteorologi, Klimatologi, dan Geofisika. 2018. Perubahan Iklim : Tren Suhu. (https://www.bmkg.go.id/iklim/?p=tren-suhu). Diakses pada tanggal 1 September 2019.

Beker, A., S.L. Vanhooser, J.H. Swartzlander and R.G. Teeter. 2004. Atmospheric ammonia concentration effects on broiler growth and performance. J. Appl. Poult. Res. 13: 5-9.

Bonnet, S., P.A. Geraert, M. Lessire, B. Carre and S. Guillaumin. 1997. Effect of High Ambient Temperature on Feed Digestibility in Broilers. J. Poultry Science. 76(6): 857-863.

Brilianto, I., T.A. Sarjana dan R. Murwani. 2019. Pengaruh zonasi dalam kandang closed house terhadap profil darah merah ayam broiler. J. Peternakan Indonesia. 21(2): 59-63.

Endraswati, A., T.A. Sarjana dan L.D. Mahfudz. 2019. Kontribusi faktor klimat di luar kandang terhadap perubahan mikroklimat closed house dengan panjang berbeda pada periode brooder di musim kemarau. J. Agripet. 19(1): 59-67.

Fanani, A. F., Suthama, N dan Sukamto, B. 2014. Retensi nitrogen dan konversi pakan ayam lokal persilangan yang diberi ekstrak umbi dahlia (dahlia variabilis) sebagai sumber inulin. J. Sains Peternakan. 12(2): 69-75.

Hai, L., D. Rong and Z.Y. Zhang. 2000. The effect of thermal environment on the digestion of broilers. J. Anim. Physiol and Anim. Nutr. 83: 57-64.

Herdiana, R.M., Y. Marshal, R. Dewanti dan Sudiyono. 2014. Pengaruh penggunaan ampas kecap dalam pakan terhadap pertambahan bobot badan harian, konversi pakan, rasio efisiensi protein, dan produksi karkas itik lokal jantan umur delapan minggu. Buletin Peternakan. 38(3): 157-162.

Homidan, A., J.F. Robertson and A.M. Petchey. 2003. Review of the effect of ammonia and dust concentrations on broiler performance. J. World’s Poult. Sci. 59(3): 340-349.

Indrasari, F.N., V.D. Yunianto dan I. Mangisah. 2014. Evaluasi kecernaan protein kasar dan retensi nitrogen pada ayam broiler dengan ransum berbeda level protein dan asam asetat. J. Animal Agriculture. 3(3): 401-408.

Kusnadi, E. dan F. Rahim. 2009. Performa dan kandungan hormon triiodotironin plasma ayam broiler akibat pengaruh cekaman panas di daerah tropis. Media Peternakan. 32(3):155-162.

Lin, H., E. Decuypere and J. Buyse. 2006. Acute heat stress induces oxidative stress in broiler chickens. Comparative Biochemistry and Physiology. 144: 11–17.

MacLeod, M.G., C.C. Whitehead, H.D. Griffin and T.R. Jewitt. 1988. Energi and nitrogen retention and loss broiler chickens genetically selected for leanness and fatness. Brit. Poultry Science. 67: 285-292.

Mahfudz, L. D. 2006. Pengaruh penggunaan ampas tahu fermentasi terhadap efisiensi penggunaan protein itik Tegal jantan. J. Pengembangan Peternakan Tropis. 31: 129-134.

McDonald, P. A. Edwards and J. F. D. Green Haigh. 1988. Animal Nutrition. 4th Ed. Longman Scientific and Technical. Copublishing in The USA with John Wiley and Sons. Inc. New York.

Metasari, T., D. Septinova dan V. Wanniatie. 2014. Pengaruh berbagai jenis bahan litter terhadap kualitas litter broiler fase finisher di closed house. J. Ilmiah Peternakan Terpadu. 2(3): 23-29.

Nassem, S and A.J. King. 2018. Ammonia production in poultry houses can affect health of humans, birds, and the environment—techniques for its reduction during poultry production. J. Environmental Science and Pollution Research. 25(16): 1-25.

Osman, A.M and N.I. Tanios. 1983. The effect of heat on the intestinal and pancreatic levels of amylase and maltase of laying hens and broilers. J. Physiol. Biochem. 75(4): 563-567.

Patterson, P. H and Adrizal. 2005. Management strategies to reduce air emissions: emphasis, dust and ammonia. J. App. Poult. Res. 14(3): 638-650.

Puvaldolpirod, S and J.P. Thaxton. 2000. Model of physiological stress in chickens 4. Digestion and metabolism. J. Poultry Science. 79: 383-390.

Renata., T.A. Sarjana dan S. Kismiati. 2018. Pengaruh zonasi dalam kandang closed house terhadap kadar amonia dan dampaknya pada kualitas daging broiler di musim penghujan. J. Ilmu-ilmu Peternakan. 28(3): 183-191.

Ritz, C. W., B. D. Fairchild and M. P. Lacy. 2004. Implications of Ammonia Production and Emissions from Commercial Poultry Facilities: A Review. J. Appl. Poult. Res. 13(4): 684-692.

Sarjana, T.A., L.D. Mahfudz, D. Winarti, W. Sarenggat, N.K.F. Huda, N.A. Rahma, Renata, D.A. Suryani, W.F. Arfianta dan B. Mustaqim. 2018. Microclimate condition changes due to zone placement in broiler closed house. Prosiding Seminar Nasional Kebangkitan Peternakan III : Hilirisasi Teknologi Peternakan pada Era Revolusi Industri 4.0. Semarang, 3 Mei 2018. Hal. 688-700.

Selle, P.H., V. Ravindran, P.H. Pittolo and W.L. Bryden. 2003. Effects of phytase supplementation of diets with two tiers of nutrient specifications on growth performance and protein efficiency ratios of broiler chickens. Asian-Australasian J. Anim. Sci. 16(8): 1158-1164.

Shi, Q., W. Wang, M. Chen, H. Zhang and S. Xu. 2019. Science of the total environment ammonia induces treg / th1 imbalance with triggered NF- κ B pathway leading to chicken respiratory in fl ammation response. Science of the Total Environment. 659: 354–362.

Sugiharto, S., T. Yudiarti, I. Isroli, E. Widiastuti dan F. D. Putra. 2017. Effects of feeding cassava pulp fermented with Acremonium charticola on growth performance, nutrient digestibility and meat quality of broiler chicks. J. Anim. Sci. 47 (2): 130-138.

Sugito., W. Manalu, D.A. Astuti, E. Handharyani dan Chairul. 2007. Efek cekaman panas dan pemberian ekstrak heksan tanaman jaloh (Salix Tetrasperma Roxb) terhadap kadar kortisol, triiodotironin dan profil hematologi ayam broiler. JITV. 12(3): 175-182.

Sulaibah, S., T.A. Sarjana dan R. Murwani. 2019. Pengaruh perbedaan panjang kandang dan zona penempatan di dalam closed house terhadap total leukosit dan differensial leukosit ayam broiler. Agromedia. 37(1): 86-92.

Tamzil, M.H. 2014. Stres panas pada unggas: metabolisme, akibat dan upaya penanggulangannya. Wartazoa. 24(2): 57–66.

Wahju, J. 2004. Kecernaan Protein. Gadjah Mada University Press, Yogyakarta.

Wens and D.E. Rowe. 2006. Spatial variability of litter gaseous flux within a commercial broiler house: ammonia, nitrous oxide, carbon dioxide, and methane. J. Poult. Sci. 85(2): 167–172.

Wolynetz, M.S and I.R. Sibbald. 1984. Relationships Between Apparent and True Metabolizable Energy and the Effects of a Nitrogen Correction. J. Poult. Sci. 63(7): 1386-1399.

Xiong, Y., X. Tang, Q. Meng and H. Zhang. Differential expression analysis of the broiler tracheal proteins responsible for the immune response and muscle contraction induced by high concentration of ammonia using iTRAQ-coupled 2D LC-MS/MS. J. Science China Life Science. 59(11): 1166-1176.

Yahav, S and J.P. Mcmurtry. 2001. Thermotolerance acquisition in broiler chickens by temperature conditioning early in life-the effect of timing and ambient temperature. J. Poult. Sci. 80(22): 1662–1666.

Yahav, S. 2004. Ammonia affects performance and thermoregulation of male broiler chickens. Anim. Res. 53(4): 289–293.

Zuprizal., M. Larbier, A.M. Chagneau and P.A. Geraert. 1993. Influence of ambient temperature on true digestibility of protein and amino acids of rapeseed and soybean meals in broilers. J. Poult. Sci. 72(2): 289-295.




DOI: http://dx.doi.org/10.21776/ub.jiip.2020.030.03.08

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.