Twinning and Ovulation Rate for Sustainable Production in Cattle

Kamalludin Mamat Hamidi, Anjas Asmara Samsudin, Suyadi Suyadi

Abstract


Profits is very important in most industries and determined by the cost and amount of products generated. In the livestock industries, higher number of viable animals produced will improve the economies of scale, hence, their profit. In general, twinning can be a good approach to increase reproductive capacity, and consequently the production volume. Cattle are monovular animal, typically give birth to one offspring and multiple birth is rare. Multiple gestation is mostly unfavorable in the dairy industry due to their negative impact on reproductive and production performance on cow and calf. Twinning is highly correlated to ovulation rate and various genes that are affecting hyperprolificacy in sheep have been identified. Many studies have reported quantitative trait loci (QTL) that are associated with high ovulation rate and twinning in cattle. Besides the genetic factor, twinning can also be induced via hormonal methods. Knowledge on the factors that causing hyperprolificacy can assist the breeders or farmers for their selection, based on their objectives and strategy.


Keywords


Hyperprolificacy; Livestock industry; Reproductive performance; Qantitative trait loci; Twinning technology

Full Text:

PDF

References


Allan, M. F., Kuehn, L. A., Cushman, R. A., Snelling, W. M., Echternkamp, S. E., & Thallman, R. M. (2009). Confirmation of quantitative trait loci using a low-density single nucleotide polymorphism map for twinning and ovulation rate on bovine chromosome 51,2. Journal of Animal Science, 87(1), 46–56. https://doi.org/10.2527 /jas.2008-0959

Andreu Vázquez, C. (2012). Embryo Reduction. In An Open Window to Decreasing the Twinning Rate in High-Producing Dairy Cattle. Universitat Autònoma de Barcelona.

Arias, J., & Kirkpatrick, B. (2004). Mapping of bovine ovulation rate QTL; an analytical approach for three generation pedigrees. Animal Genetics, 35(1), 7–13. https://doi.org/ 10.1046/j.1365-2052.2003.01069.x

Blattman, A. N., Kirkpatrick, B. W., & Gregory, K. E. (2009). A search for quantitative trait loci for ovulation rate in cattle. Animal Genetics, 27(3), 157–162. https://doi.org/10.1111/j.1365-2052.1996.tb00943.x

Bodin, L., Di Pasquale, E., Fabre, S., Bontoux, M., Monget, P., Persani, L., & Mulsant, P. (2007). A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in lacaune sheep. Endocrinology, 148(1), 393–400. https://doi.org/10.1210/en.2006-0764

Cabrera, V. E., & Fricke, P. M. (2021). Economics of twin pregnancies in dairy cattle. Animals, 11(2), 552. https://doi.org/10.3390/ani11020552

Carvalho, P. D., Santos, V. G., Fricke, H. P., Hernandez, L. L., & Fricke, P. M. (2019). Effect of manipulating progesterone before timed artificial insemination on reproductive and endocrine outcomes in high-producing multiparous Holstein cows. Journal of Dairy Science, 102(8), 7509–7521. https://doi.org/10.3168/ jds.2019-16536

Cobanoglu, O., Berger, P. J., & Kirkpatrick, B. W. (2005). Genome screen for twinning rate QTL in four North American Holstein families. Animal Genetics, 36(4), 303–308. https://doi. org/10.1111/j.1365-2052.2005.01299.x

Cruickshank, J., Dentine, M. R., Berger, P. J., & Kirkpatrick, B. W. (2004). Evidence for quantitative trait loci affecting twinning rate in North American Holstein cattle. Animal Genetics, 35(3), 206–212. https://doi. org/10.1111/j.1365-2052.2004.01138.x

Davis, G. H., Montgomery, G. W., Allison, A. J., Kelly, R. W., & Bray, A. R. (1982). Segregation of a major gene influencing fecundity in progeny of Booroola sheep. New Zealand Journal of Agricultural Research, 25(4), 525–529. https://doi.org/10.1080/0028823 3.1982.10425216

Davis, G.H., Bruce, G. D., & Dodds, K. G. (2001). Ovulation rate and litter size of prolific Inverdale (FecXI) and Hanna (FecXH) sheep. Proc Assoc Adv Anim Breed Genet, 14, 74–77.

Davis, G. H., Dodds, K. G., Wheeler, R., & Jay, N. P. (2001). Evidence that an imprinted gene on the x chromosome increases ovulation rate in sheep. Biology of Reproduction, 64(1), 216–221. https://doi.org/10.1095/biolrepro d64.1.216

De Rensis, F., & López-Gatius, F. (2014). Use of equine chorionic gonadotropin to control reproduction of the dairy cow: a review. Reproduction in Domestic Animals, 49(2), 177–182. https://doi.org/10.1111/rda.12268

Demars, J., Fabre, S., Sarry, J., Rossetti, R., Gilbert, H., Persani, L., Tosser-Klopp, G., Mulsant, P., Nowak, Z., Drobik, W., Martyniuk, E., & Bodin, L. (2013). Genome-wide association studies identify two novel bmp15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genetics, 9(4), e1003482. https://doi.org/10.1371/journal.pgen.1003482

Drouilhet, L., Mansanet, C., Sarry, J., Tabet, K., Bardou, P., Woloszyn, F., Lluch, J., Harichaux, G., Viguié, C., Monniaux, D., Bodin, L., Mulsant, P., & Fabre, S. (2013). The highly prolific phenotype of lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary. PLoS Genetics, 9(9), e1003809. https://doi.org/10.1371/ journal.pgen.1003809

Echternkamp, S. E., Cushman, R. A., Allan, M. F., Thallman, R. M., & Gregory, K. E. (2007). Effects of ovulation rate and fetal number on fertility in twin-producing cattle1,2. Journal of Animal Science, 85(12), 3228–3238. https://doi.org/10.2527/jas.2007-0209

Echternkamp, S. E., Thallman, R. M., Cushman, R. A., Allan, M. F., & Gregory, K. E. (2007). Increased calf production in cattle selected for twin ovulations1,2. Journal of Animal Science, 85(12), 3239–3248. https://doi.org/10.2527/jas.2007-0210

Elks, C. E., Perry, J. R. B., Sulem, P., Chasman, D. I., Franceschini, N., He, C., Lunetta, K. L., Visser, J. A., Byrne, E. M., Cousminer, D. L., Gudbjartsson, D. F., Esko, T., Feenstra, B., Hottenga, J.-J., Koller, D. L., Kutalik, Z., Lin, P., Mangino, M., Marongiu, M., Murray, A. (2010). Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nature Genetics, 42(12), 1077–1085. https://doi.org/10.1038/ng.714

Fabre, S., Pierre, A., Mulsant, P., Bodin, L., Di Pasquale, E., Persani, L., Monget, P., & Monniaux, D. (2006). Regulation of ovulation rate in mammals: contribution of sheep genetic models. Reproductive Biology and Endocrinology, 4(1), 20. https:// doi.org/10.1186/1477-7827-4-20

Fitzgerald, A. M., Berry, D. P., Carthy, T., Cromie, A. R., & Ryan, D. P. (2014). Risk factors associated with multiple ovulation and twin birth rate in Irish dairy and beef cattle. Journal of Animal Science, 92(3), 966–973. https://doi.org/10.2527/jas.2013-6718

Fricke, P. M. (2001). Twinning in Dairy Cattle. The Professional Animal Scientist, 17(2), 61–67. https://doi.org /10.15232/S1080-7446(15)31599-0

Garcia-Guerra, A., Kamalludin, M. H., Kirkpatrick, B. W., & Wiltbank, M. C. (2018). Trio a novel bovine high-fecundity allele: II. Hormonal profile and follicular dynamics underlying the high ovulation rate†. Biology of Reproduction, 98(3), 335–349. https://doi.org/10.1093/biolre/iox156

Garcia-Guerra, A., Wiltbank, M. C., Battista, S. E., Kirkpatrick, B. W., & Sartori, R. (2018). Mechanisms regulating follicle selection in ruminants: lessons learned from multiple ovulation models. Animal Reproduction, 15(Suppl. 1), 660–679. https://doi.org/10.21451/1984-3143-AR2018-0027

Ginther, O. J., Bergfelt, D. R., Kulick, L. J., & Kot, K. (2000). Selection of the dominant follicle in cattle: role of estradiol1. Biology of Reproduction, 63(2), 383–389. https://doi.org/10.10 95/biolreprod63.2.383

Gonda, M. G., Arias, J. A., Shook, G. E., & Kirkpatrick, B. W. (2004). Identification of an ovulation rate QTL in cattle on BTA14 using selective DNA pooling and interval mapping. Animal Genetics, 35(4), 298–304. https://doi.org/10.1111/j.13 65-2052.2004.01162.x

Gregory, K. E., Bennett, G. L., Van Vleck, L. D., Echternkamp, S. E., & Cundiff, L. V. (1997). Genetic and environmental parameters for ovulation rate, twinning rate, and weight traits in a cattle population selected for twinning. Journal of Animal Science, 75(5), 1213–1222. https://doi.org/10.2527/1997.7551213x

Guerra-Martinez, P., Dickerson, G. E., Anderson, G. B., & Green, R. D. (1990). Embryo-transfer twinning and performance efficiency in beef production. Journal of Animal Science, 68(12), 4039–4050. https:// doi.org/10.2527/1990.68124039x

Hanrahan, J. P., Gregan, S. M., Mulsant, P., Mullen, M., Davis, G. H., Powell, R., & Galloway, S. M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in cambridge and belclare sheep (Ovis aries). Biology of Reproduction, 70(4), 900–909. https://doi.org/10.1095/biol reprod.103.023093

Johnson, M. R., Turman, E. J., & Stephens, D. F. (1975). Gonadotropin Induced Multiple Births in Beef Cows Following Estrus Synchronization. Journal of Animal Science, 41(5), 1394–1399. https://doi.org/10.2527/ jas1975.4151394x

Jones, S. V. H., & Rouse, J. E. (1920). The relation of age of dam to observed fecundity in domesticated animals. Journal of Dairy Science, 3(4), 260–290. https://doi.org/10.3168/jds.S002 2-0302(20)94273-X

Juengel, J. L., Davis, G. H., & McNatty, K. P. (2013). Using sheep lines with mutations in single genes to better understand ovarian function. REPRODUCTION, 146(4), R111–R123. https://doi.org/10.1530/REP-12-0509

Juengel, J. L., O’Connell, A. R., French, M. C., Proctor, L. E., Wheeler, R., Farquhar, P. A., Dodds, K. G., Galloway, S. M., Johnstone, P. D., & Davis, G. H. (2011). Identification of a line of sheep carrying a putative autosomal gene increasing ovulation rate in sheep that does not appear to interact with mutations in the transforming growth factor beta superfamily. Biology of Reproduction, 85(1), 113–120. https://doi.org/10.10 95/biolreprod.110.090514

Kamalludin, M. H., Garcia-Guerra, A., Wiltbank, M. C., & Kirkpatrick, B. W. (2018). Trio, a novel high fecundity allele: I. Transcriptome analysis of granulosa cells from carriers and noncarriers of a major gene for bovine ovulation rate. Biology of Reproduction, 98(3), 323–334. https://doi.org/10.1093/biolre/iox133

Kappes, S. M., Bennett, G. L., Keele, J. W., Echternkamp, S. E., Gregory, K. E., & Thallman, R. M. (2000). Initial results of genomic scans for ovulation rate in a cattle population selected for increased twinning rate. Journal of Animal Science, 78(12), 3053. https:// doi.org/10.2527/2000.78123053x

Kim, E.-S., Shi, X., Cobanoglu, O., Weigel, K., Berger, P. J., & Kirkpatrick, B. W. (2009). Refined mapping of twinning-rate quantitative trait loci on bovine chromosome 5 and analysis of insulin-like growth factor-1 as a positional candidate gene1. Journal of Animal Science, 87(3), 835–843. https://doi.org/10.2527/jas.2008-1252

Kinsel, M. L., Marsh, W. E., Ruegg, P. L., & Etherington, W. G. (1998). Risk factors for twinning in dairy cows. Journal of Dairy Science, 81(4), 989–993. https://doi.org/10.3168/jds.S002 2-0302(98)75659-0

Kirkpatrick, B. W., Byla, B. M., & Gregory, K. E. (2000). Mapping quantitative trait loci for bovine ovulation rate. Mammalian Genome, 11(2), 136–139. https://doi.org/10.1007/s003350010026

Kirkpatrick, B. W., & Morris, C. A. (2015). A major gene for bovine ovulation rate. PLOS ONE, 10(6), e0129025. https://doi.org/10.1371/journal.pone.0129025

Knight, P. G., Satchell, L., & Glister, C. (2012). Intra-ovarian roles of activins and inhibins. Molecular and Cellular Endocrinology, 359(1–2), 53–65. https: //doi.org/10.1016/j.mce.2011.04.024

Komisarek, J., & Dorynek, Z. (2002). Genetic aspects of twinning in cattle. Journal of Applied Genetics, 43(1), 55–68.

Lett, B. M., & Kirkpatrick, B. W. (2018). Short communication: heritability of twinning rate in holstein cattle. Journal of Dairy Science, 101(5), 4307–4311. https://doi.org/10.3168/jd s.2017-13660

Lien, S., Karlsen, A., Klemetsdal, G., Våge, D. I., Olsaker, I., Klungland, H., Aasland, M., Heringstad, B., Ruane, J., & Gomez-Raya, L. (2000). A primary screen of the bovine genome for quantitative trait loci affecting twinning rate. Mammalian Genome, 11(10), 877–882. https://doi.org/10.10 07/s003350010180

Martin, P., Raoul, J., & Bodin, L. (2014). Effects of the FecL major gene in the Lacaune meat sheep population. Genetics Selection Evolution, 46(1), 48. https://doi.org/10.1186/1297-9686 -46-48

Martinez-Royo, A., Jurado, J. J., Smulders, J. P., Martí, J. I., Alabart, J. L., Roche, A., Fantova, E., Bodin, L., Mulsant, P., Serrano, M., Folch, J., & Calvo, J. H. (2008). A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep. Animal Genetics, 39(3), 294–297. https://doi. org/10.1111/j.1365-2052.2008.01707.x

Martinez, M. F., Tutt, D., Quirke, L. D., Tattersfield, G., & Juengel, J. L. (2014). Development of a GnRH-PGF2α-progesterone-based synchronization protocol with eCG for inducing single and double ovulations in beef cattle1,2. Journal of Animal Science, 92(11), 4935–4948. https://doi.org/10.2527/jas.2013-7512

Monteagudo, L. V., Ponz, R., Tejedor, M. T., Laviña, A., & Sierra, I. (2009). A 17bp deletion in the Bone Morphogenetic Protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. Animal Reproduction Science, 110(1–2), 139–146. https://doi. org/10.1016/j.anireprosci.2008.01.005

Morris, C. A., Wheeler, M., Levet, G. L., & Kirkpatrick, B. W. (2010). A cattle family in New Zealand with triplet calving ability. Livestock Science, 128(1–3), 193–196. https://doi.org/10. 1016/j.livsci.2009.11.009

Mulsant, P., Lecerf, F., Fabre, S., Schibler, L., Monget, P., Lanneluc, I., Pisselet, C., Riquet, J., Monniaux, D., Callebaut, I., Cribiu, E., Thimonier, J., Teyssier, J., Bodin, L., Cognié, Y., Chitour, N., & Elsen, J.-M. (2001). Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proceedings of the National Academy of Sciences, 98(9), 5104–5109. https://doi.org/10.1073/ pnas.091577598

Najafi, G., Cedden, F., Mojtahedi, S., & Aliverdinasab, R. (2014). Estrus synchronization adn twinning rate of ghezel ewes treated with CIDR and PMSG during the breeding season. Online Journal of Animal and Feed Research, 4(6), 144–149.

Nicol, L., Bishop, S. C., Pong-Wong, R., Bendixen, C., Holm, L.-E., Rhind, S. M., & McNeilly, A. S. (2009). Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. REPRODUCTION, 138(6), 921–933. https://doi.org/10.1530/REP -09-0193

Rutledge, J. J. (1975). Twinning in Cattle. Journal of Animal Science, 40(5), 803–815. https://doi.org/10.2527/jas 1975.405803x

Sawa, A., Bogucki, M., & Głowska, M. (2015). Effect of single and multiple pregnancies on performance of primiparous and multiparous cows. Archives Animal Breeding, 58(1), 43–48. https://doi.org/10.5194/aab-58-43 -2015

Scaramuzzi, R. J., Baird, D. T., Campbell, B. K., Driancourt, M.-A., Dupont, J., Fortune, J. E., Gilchrist, R. B., Martin, G. B., McNatty, K. P., McNeilly, A. S., Monget, P., Monniaux, D., Viñoles, C., & Webb, R. (2011). Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reproduction, Fertility and Development, 23(3), 444–467. https://doi.org/10.1071/RD09161

Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell, 113(6), 685–700. https://doi.org/10. 1016/S0092-8674(03)00432-X

Silva, B. D. M., Castro, E. A., Souza, C. J. H., Paiva, S. R., Sartori, R., Franco, M. M., Azevedo, H. C., Silva, T. A. S. N., Vieira, A. M. C., Neves, J. P., & Melo, E. O. (2011). A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Animal Genetics, 42(1), 89–92. https://doi.org/10.1111/j.1365-2052.2 010.02078.x

Silva del Río, N., Kirkpatrick, B. W., & Fricke, P. M. (2006). Observed frequency of monozygotic twinning in Holstein dairy cattle. Theriogenology, 66(5), 1292–1299. https://doi.org/10. 1016/j.theriogenology.2006.04.013

Souza, C. J. H., McNeilly, A. S., Benavides, M. V., Melo, E. O., & Moraes, J. C. F. (2014). Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Animal Genetics, 45(5), 732–739. https://doi.org/10.1111/age.12190

Souza, C., MacDougall, C., MacDougall, C., Campbell, B., McNeilly, A., & Baird, D. (2001). The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. Journal of Endocrinology, 169(2), R1–R6. https://doi.org/10.1677/joe.0 .169r001

Våge, D. I., Husdal, M., Kent, M. P., Klemetsdal, G., & Boman, I. A. (2013). A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genetics, 14(1), 1. https://doi.org/10.1186/1471 -2156-14-1

Van Vleck, L. D., Gregory, K. E., & Echternkamp, S. E. (1991). Ovulation rate and twinning rate in cattle: heritabilities and genetic correlation. Journal of Animal Science, 69(8), 3213. https://doi.org/10.2527/1991.69 83213x

Vinet, A., Drouilhet, L., Bodin, L., Mulsant, P., Fabre, S., & Phocas, F. (2012). Genetic control of multiple births in low ovulating mammalian species. Mammalian Genome, 23(11–12), 727–740. https://doi.org/10.1007/s00 335-012-9412-4

Widmer, S., Seefried, F. R., von Rohr, P., Häfliger, I. M., Spengeler, M., & Drögemüller, C. (2021). A major QTL at the LHCGR/FSHR locus for multiple birth in Holstein cattle. Genetics Selection Evolution, 53(1), 57. https://doi.org/10.1186/s12711-021-00650-1

Wiltbank, M. C., Fricke, P. M., Sangsritavong, S., Sartori, R., & Ginther, O. J. (2000). Mechanisms that prevent and produce double ovulations in dairy cattle. Journal of Dairy Science, 83(12), 2998–3007. https://doi.org/10.3168/jds.S0022-0302(00)75201-5




DOI: http://dx.doi.org/10.21776/ub.jiip.2022.032.01.15

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.