Comparative analysis of Hermetia illucens L. mixed chicken feed and commercial chicken feed to growth performance, carcass weight, and meat proximate content of Gallus domesticus L.
Abstract
Keywords
Full Text:
PDFReferences
Abduh, M. Y., Permana, A. D., Firmansyah, M., Indira, T. I., & Shafitri, T. R. (2020). From ITB for Indonesia: Biorefinery Black Soldier Fly. ITB Press.
Azis, A., Abbas, H., Heryandi, Y., & Kusnadi, E. (2011). Pertumbuhan kompensasi dan efisiensi produksi ayam broiler yang mendapat pembatasan waktu makan. Media Peternakan, 34(1), 50–57. https://doi. org/10.5398/medpet.2011.34.1.50
Barragán-Fonseca, K. B. (2018). Flies are what they eat: Tailoring nutrition of Black Soldier Fly (Hermetia illucens L.) for larval biomass production and fitness. Wageningen University.
Bell, D., & Weaver, W. D. (2002). Commercial Chicken Meat and Egg Production. In D. D. Bell & W. D. Weaver (Eds.), Commercial Chicken Meat and Egg Production. Springer US. https://doi.org/10.1007/978-1-4615-0811-3
Bosch, G., Zhang, S., Oonincx, D. G. A. B., & Hendriks, W. H. (2014). Protein quality of insects as potential ingredients for dog and cat foods. Journal of Nutritional Science, 3(1), 1–4. https://doi.org/10.1017/jns.2014.23
Cobb-Vantress. (2018). Broiler Performance & Nutrition Supplement Cobb500. In Cobb Vantres.Com.
Cullere, M., Tasoniero, G., Giaccone, V., Miotti-Scapin, R., Claeys, E., De Smet, S., & Dalle Zotte, A. (2016). Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal, 10(12), 1923–1930. https://doi.org/10.1017/S17517 31116001270
de Oliveira, J., Avanço, S. V., Garcia-Neto, M., & Ponsano, E. H. G. (2016). Composition of broilers meat. Journal of Applied Poultry Research, 25(2), 173–181. https://doi.org/10.3382/japr/ pfv095
Diener, S., Zurbrügg, C., & Tockner, K. (2009). Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Management & Research: The Journal for a Sustainable Circular Economy, 27(6), 603–610. https://doi. org/10.1177/0734242X09103838
Directorate General of Livestock and Animal Health. (2020). Livestock and Animal Health Statistics 2020. Ministry of Agriculture Indonesia.
Dobermann, D., Swift, J. A., & Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293–308. https://doi.org/10.1111/nbu.12291
Gasco, L., Henry, M., Piccolo, G., Marono, S., Gai, F., Renna, M., Lussiana, C., Antonopoulou, E., Mola, P., & Chatzifotis, S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology, 220(1), 34–45. https://doi.org/10.1016/j.anifeed sci.2016.07.003
Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203(1), 1–22. https://doi.org/10.1016/j.anifeed sci.2015.03.001
Nasruddin. (2010). Nutrition food composition broiler finisher from several local food materials. Dinamika Penelitian BIPA, 21(38), 144–152.
National Standardization. (2015). SNI 8173.3:2015. BSN.
Pratama, A., Suradi, K., Balia, roostita l, Chairunnisa, H., Lengkey, hendronoto aw, Sutardjo, D. S., Suryaningsih, L., Gumilar, J., Wulandari, E., & Putranto, W. S. (2015). Evaluasi karakteristik sifat fisik karkas ayam broiler berdasarkan bobot badan hidup. Jurnal Ilmu Ternak, 15(2), 61–65.
Raksakantong, P., Meeso, N., Kubola, J., & Siriamornpun, S. (2010). Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Research International, 43(1), 350–355. https://doi.org/10.1016/j.foodres. 2009.10.014
Rohmadi, D., Harimurti, S., & Wihandoyo, W. (2021). Performance native chicken treated by different stocking density and litter type. Jurnal Ilmu-Ilmu Peternakan, 31(2), 95–101. https://doi.org/10.21776/ub.jiip.2021.031.02.01
Schiavone, A., Cullere, M., De Marco, M., Meneguz, M., Biasato, I., Bergagna, S., Dezzutto, D., Gai, F., Dabbou, S., Gasco, L., & Dalle Zotte, A. (2017). Partial or total replacement of soybean oil by black soldier fly larvae ( Hermetia illucens L. ) fat in broiler diets: effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Italian Journal of Animal Science, 16(1), 93–100. https://doi.org/10.10 80/1828051X.2016.1249968
Schiavone, A., De Marco, M., Martínez, S., Dabbou, S., Renna, M., Madrid, J., Hernandez, F., Rotolo, L., Costa, P., Gai, F., & Gasco, L. (2017). Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. Journal of Animal Science and Biotechnology, 8(1), 51–60. https://doi.org/10.1186/ s40104-017-0181-5
Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq, P., & De Smet, S. (2017). Nutritional composition of black soldier fly ( Hermetia illucens ) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture, 97(8), 2594–2600. https://doi.org/10.1 002/jsfa.8081
van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58(1), 563–583. https://doi.org/10.1146/annurev-ento-120811-153704
Wardhana, A. H. (2017). Black soldier fly (Hermetia illucens) as an alternative protein source for animal feed. Indonesian Bulletin of Animal and Veterinary Sciences, 26(2), 69–78. https://doi.org/10.14334/wartazoa.v26i2.1327
DOI: http://dx.doi.org/10.21776/ub.jiip.2022.032.01.10
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.